• Title/Summary/Keyword: failure pressure

Search Result 1,663, Processing Time 0.025 seconds

Infiltration and Stability Analysis Using Double Modal Water Retention Curves for Unsaturated Slopes in Pohang (이중모드 함수특성곡선을 이용한 포항 산사태에 대한 불포화 비탈면의 침투 및 안정해석)

  • Oh, Seboong;Jang, Junhyuk;Yoon, Seokyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.695-705
    • /
    • 2024
  • As a result of Typhoon Hinnamnoh, several slope failures occurred in the Pohang region, it is necessary to perform infiltration and slope stability analyses due to the actual rainfall. In the failed sites, samples were collected, and the hydro-mechanical properties of unsaturated soil were examined. Modeling the actual behavior using a single-mode function characteristic curve was found to be inadequate, leading to the adoption of a dual-mode function characteristic curve. The dual-mode function showed better agreement with the water retention test data. We calculated the unsaturated hydraulic conductivity for single and dual modes and performed rainfall-induced infiltration analysis. The variations in saturation and pore water pressure were calculated due to rainfall for three landslide-prone areas, Stability analysis based on effective stress of unsaturated soil was conducted, and safety factors were computed over time steps. The dual-mode model successfully reproduced landslides triggered by Typhoon Hinnamnoh, while the single-mode model exhibited a minimum safety factor of 1.2-1.3, making slope failure unpredictable. The dual-mode model accurately predicted instability in the slope by appropriately accounting for pore water pressure variations during Typhoon.

Differential Expression of Kidney Proteins in Streptozotocin-induced Diabetic Rats in Response to Hypoglycemic Fungal Polysaccharides

  • Hwang, Hye-Jin;Baek, Yu-Mi;Kim, Sang-Woo;Kumar, G. Suresh;Cho, Eun-Jae;Oh, Jung-Young;Yun, Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.2005-2017
    • /
    • 2007
  • Diabetic nephropathy remains a major cause of morbidity and mortality in the diabetic population and is the leading cause of end-stage renal failure. Despite current therapeutics including intensified glycemic control and blood pressure lowering agents, renal disease continues to progress relentlessly in diabetic patients, albeit at a lower rate. Since synthetic drugs for diabetes are known to have side effects, fungal mushrooms as a natural product come into preventing the development of diabetes. Our previous report showed the hypoglycemic effect of extracellular fungal polysaccharides (EPS) in streptozotocin (STZ)-induced diabetic rats. In this study, we analyzed the differential expression patterns of rat kidney proteins from normal, STZ-induced diabetic, and EPS-treated diabetic rats, to discover diabetes-associated proteins in rat kidney. The results of proteomic analysis revealed that up to 500 protein spots were visualized, of which 291 spots were differentially expressed in the three experimental groups. Eventually, 51 spots were statistically significant and were identified by peptide mass fingerprinting. Among the differentially expressed renal proteins, 10 were increased and 16 were decreased significantly in diabetic rat kidney. The levels of different proteins, altered after diabetes induction, were returned to approximately those of the healthy rats by EPS treatment. A histopathological examination showed that EPS administration restored the impaired kidney to almost normal architecture. The study of protein expression in the normal and diabetic kidney tissues enabled us to find several diabetic nephropathy-specific proteins, such as phospholipids scramblase 3 and tropomyosin 3, which have not been mentioned yet in connection with diabetes.

Development of a Method to Reduce Damages by Pipe Failures (상수관 파괴에 의한 피해 경감기법의 개발)

  • Jun, Hwan-Don;Kim, Seok-Hyeon;Park, Moo-Jong;Kim, Joong-Hoon;Lee, Hwan-Goo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.31-36
    • /
    • 2008
  • A water distribution system should be constructed reasonably to supply water for the customer with proper quality and pressure as demands at nodes fluctuate with time. Also it should be reliable to minimize undesirable effects on the customer when various accidents happen such as pipe failures. A new method is presented here to reduce damages by pipe failures. For the work, two methods, namely, the method for estimating practical extent of damage by pipe failures and for estimating water distribution reliability, are adopted to analyze a water distribution system and to explore the damage reduction by pipe failures. As the results from the analysis of the model, the damage can be reduced effectively by increasing durability of each pipe in minimum cutsets according to the order of priority. The suggested method was applied to the Cherry-Hill network to verify its applicability.

Prediction of Hydrofracture of Rock Salt under Ground at the Waste Isolation Pilot Plant (지하 핵 폐기물 저장 암염의 파괴현상 검증 및 분석)

  • Heo, Gwang-Hee;Lee, Cheo-Keun;Heo, Yol
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.139-162
    • /
    • 1995
  • The possibility of the development of gas driven hydrofractures at the Waste Isolation Pilot Plant(WIPP) is investigated through analytical and numerical calculations and through laboratory experiments. First, an investigation of the chemical reactions involved shows that a large volume of gas could potentially be generated through the oxidation of iron in the waste. Simple ground water'flow calculations then show that unless regions of high permeability has been created, this gas volume will build up the pressure high enough to cause tensile damage in the horizontal planes of weakness or in the halite itself. The analytical calculations were performed using the concepts of linear elastic fracture mechanics and the numerical calculations were done using the finite element method. Also, laboratory tests were conducted to illustrate possible failure mechanisms. It is possible that after growing horizontal crack in the weaker anhydride layer, the crack could break out of this layer and propagate upward into the halite and toward the ground surface at an inclined argle of around 53$^{\circ}$ above horizontal. To prevent this latter phenomenon the anhydrite must have a fracture toughness less than 0.5590 times than that of the halite. Through the tests, three types of crack(radial vertical cracks, horizontal circular cracks and cone -shaped cracks) were observed.

  • PDF

The Study on Liquefaction Characteristics of Silty Sand Soils by Cyclic Triaxial Test (반복삼축시험에 의한 실트 모래 지반의 액상화 특성 연구)

  • Lee, Song;Jeon, Je-Sung;Kim, Tae-Hwun
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.133-152
    • /
    • 1999
  • The cyclic triaxial test was carried out to research liquefaction characteristics and sample disturbance effects of silty sand soils at the west coast in Korea. First, liquefaction in silty sand was generated when axial strain approached to $\pm10%$ of strain and behavior of pore pressure was similar to the formula suggested by Seed, Martin, and Lysmer(1975). Also, it was found that dilatancy was generated at failure. Secondly, the liquefaction evaluation methods suggested by many researchers were carried out and the results were compared. In these methods the weak depth in liquefaction was similar and the method carried out by cyclic triaxial test on remolded sample showed the least safety factor. Thirdly the stress ratio by cyclic triaxial test was compared with that obtained from SPT N-value as a kind of empirical methods. It was found that the effect of sample disturbance was relatively small when SPT N-value was less than 20, but there were large differences in safety factor and resistance of liquefaction in soil by the effects of disturbance and remolding when SPT N-value was more than 20.

  • PDF

A Study on the Cycle Analyzing and Intake Valve Control by the Miller Method with a High Expansion into Low-Speed Diesel Engine (저속 디젤기관에서 고팽창의 밀러방식에 의한 사이클 해석 및 흡기밸브제어에 대한 연구)

  • Jag, Tae-Ik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1100-1106
    • /
    • 2009
  • Recently, there are quite a lot of attention is drown on the researches related to of Miller method applied high expansion cycle. For this study, high expansion cycles are formed and analyzed with the base view point of thermodynamics, and the features of each factors are also investigated. As a result of analysis, the expansion-compression ratio is expected with a decrease of effective compression ratio as intake valve closing time retarded, however, the decrease of mean effective pressure and its output is accompanied with the counterflow of intake air. Accordingly, as the consequence of such failure, it is expected that an alternative is needed for the realization of high expansion cycles, and the improvement over thermal efficiency. To materialize such cycle, the control system to delay the closing time of intake valve was designed and VVT, the 3 S/B low speed diesel engine, is applied to evaluate the efficiency. The result of the trial shows that there was no significant errors.

Development of a simulation method for the subsea production system

  • Woo, Jong Hun;Nam, Jong Ho;Ko, Kwang Hee
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.173-186
    • /
    • 2014
  • The failure of a subsea production plant could induce fatal hazards and enormous loss to human lives, environments, and properties. Thus, for securing integrated design safety, core source technologies include subsea system integration that has high safety and reliability and a technique for the subsea flow assurance of subsea production plant and subsea pipeline network fluids. The evaluation of subsea flow assurance needs to be performed considering the performance of a subsea production plant, reservoir production characteristics, and the flow characteristics of multiphase fluids. A subsea production plant is installed in the deep sea, and thus is exposed to a high-pressure/ low-temperature environment. Accordingly, hydrates could be formed inside a subsea production plant or within a subsea pipeline network. These hydrates could induce serious damages by blocking the flow of subsea fluids. In this study, a simulation technology, which can visualize the system configuration of subsea production processes and can simulate stable flow of fluids, was introduced. Most existing subsea simulations have performed the analysis of dynamic behaviors for the installation of subsea facilities or the flow analysis of multiphase flow within pipes. The above studies occupy extensive research areas of the subsea field. In this study, with the goal of simulating the configuration of an entire deep sea production system compared to existing studies, a DES-based simulation technology, which can logically simulate oil production processes in the deep sea, was analyzed, and an implementation example of a simplified case was introduced.

TPC Algorithm for Fault Diagnosis of CAN-Based Multiple Sensor Network System (CAN 기반 다중센서 네트워크 시스템의 고장진단을 위한 TPC알고리즘)

  • Ha, Hwimyeong;Hwang, Yuseop;Jung, Kyungsuk;Kim, Hyunjun;Lee, Bongjin;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.2
    • /
    • pp.147-152
    • /
    • 2016
  • This paper proposes a new TPC (Transmission Priority Change) algorithm which is used to diagnose failures of a CAN (Controller Area Network) based network system for the oil tank monitoring. The TPC algorithm is aimed to increase the total amount of data transmission and to minimize the latency for an urgent message by changing transmission priority. The urgency of the data transmission has been determined by the conditions of sensors. There are multiple sensors inside of the oil tank, such as temperature, valve, pressure and level sensors. When the sensors operate normally, the sensory data can be collected through the CAN network by the monitoring system. However when there is a dangerous situation or failure situation happened at a sensor, the data need to be handled quickly by the monitoring system, which is implemented by using the TPC algorithm. The effectiveness of the TPC algorithm has been verified by the real experiments. In addition, this paper introduces a method that people can figure out the condition of oil tanks and also can perform the fault diagnosis in real-time by using transmitted packet data. By applying this TPC algorithm to various industries, the convenience and reliability of multiple sensors network system can be improved.

Analysis of ICU Treatment on Resection of Giant Tumors in the Mediastinum of the Thoracic Cavity

  • Kang, Nai-Min;Xiao, Ning;Sun, Xiao-Jun;Han, Yi;Luo, Bao-Jian;Liu, Zhi-Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3843-3846
    • /
    • 2013
  • Objective: The purpose of this study was to assess prognosis after resection of giant tumors (including lobectomy or pneumonectomy) in the mediastinum. Materials and Methods: Patients with resection of a giant tumor in the mediastinum of the thoracic cavity received ICU treatment including dynamic monitoring of vital signs, arterial blood pressure and CVP detection, determination of hemorrhage, pulmonary function and blood gas assay, treatment of relevant complications, examination and treatment with fiber optic bronchoscopy, transfusion and hemostasis as well as postoperative removal of ventilators by invasive and non-invasive sequential mechanical ventilation technologies. Results: Six patients were rehabilitated successfully after ICU treatment with controlled postoperative errhysis and pulmonary infection by examination and treatment with fiber optic bronchoscopy without second application of ventilators and tubes after sequential mechanical ventilation technology. One patient died from multiple organ failure under ICU treatment due to postoperative active hemorrhage after second operative hemostasis. Conclusions: During peri-operative period of resection of giant tumor (including lobectomy or pneumonectomy) in mediastinum ofthe thoracic cavity, the ICU plays an important role in dynamic monitoring of vital signs, treatment of postoperative stress state, postoperative hemostasis and successful removal of ventilators after sequential mechanical ventilation.

Critical Illness-Related Corticosteroid Insufficiency in Patients with Low Cardiac Output Syndrome after Cardiac Surgery

  • Ok, You Jung;Lim, Ju Yong;Jung, Sung-Ho
    • Journal of Chest Surgery
    • /
    • v.51 no.2
    • /
    • pp.109-113
    • /
    • 2018
  • Background: Low cardiac output syndrome (LCOS) after cardiac surgery usually requires inotropes. In this setting, critical illness-related corticosteroid insufficiency (CIRCI) may develop. We aimed to investigate the clinical features of CIRCI in the presence of LCOS and to assess the efficacy of steroid treatment. Methods: We reviewed 28 patients who underwent a rapid adrenocorticotropic hormone (ACTH) test due to the suspicion of CIRCI between February 2010 and September 2014. CIRCI was diagnosed by a change in serum cortisol of <$9{\mu}g/dL$ after the ACTH test or a random cortisol level of <$10{\mu}g/dL$. Results: Twenty of the 28 patients met the diagnostic criteria. The patients with CIRCI showed higher Sequential Organ Failure Assessment (SOFA) scores than those without CIRCI ($16.1{\pm}2.3$ vs. $11.4{\pm}3.5$, p=0.001). Six of the patients with CIRCI (30%) received glucocorticoids. With an average elevation of the mean blood pressure by $22.2{\pm}8.7mm\;Hg$ after steroid therapy, the duration of inotropic support was shorter in the steroid group than in the non-steroid group ($14.1{\pm}2.3days$ versus $30{\pm}22.8days$, p=0.001). Three infections (15%) developed in the non-steroid group, but this was not a significant between-group difference. Conclusion: CIRCI should be suspected in patients with LCOS after cardiac surgery, especially in patients with a high SOFA score. Glucocorticoid replacement therapy may be considered to reduce the use of inotropes without posing an additional risk of infection.