• 제목/요약/키워드: failure pattern classification

검색결과 27건 처리시간 0.029초

반도체 EDS공정에서의 패턴인식기법을 이용한 불량 유형 자동 분류 방법 연구 (Automatic classification of failure patterns in semiconductor EDS Test using pattern recognition)

  • 한영신;황미영;이칠기
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 II
    • /
    • pp.703-706
    • /
    • 2003
  • Yield enhancement in semiconductor fabrication is important. It is ideal to prevent all the failures. However, when a failure occurs, it is important to quickly specify the cause stage and take countermeasure. The automatic method of failure pattern extraction from fail bit map provides reduced time to analysis and facilitates yield enhancement. This paper describes the techniques to automatically classifies a failure pattern using a fail bit map, a new simple schema which facilitates the failure analysis.

  • PDF

수율향상을 위한 반도체 EDS공정에서의 불량유형 자동분류 (Automatic Classification of Failure Patterns in Semiconductor EDS Test for Yield Improvement)

  • 한영신;이칠기
    • 한국시뮬레이션학회논문지
    • /
    • 제14권1호
    • /
    • pp.1-8
    • /
    • 2005
  • In the semiconductor manufacturing, yield enhancement is an urgent issue. It is ideal to prevent all the failures. However, when a failure occurs, it is important to quickly specify the cause stage and take countermeasure. Reviewing wafer level and composite lot level yield patterns has always been an effective way of identifying yield inhibitors and driving process improvement. This process is very time consuming and as such generally occurs only when the overall yield of a device has dropped significantly enough to warrant investigation. The automatic method of failure pattern extraction from fail bit map provides reduced time to analysis and facilitates yield enhancement. The automatic method of failure pattern extraction from fail bit map provides reduced time to analysis and facilitates yield enhancement. This paper describes the techniques to automatically classifies a failure pattern using a fail bit map.

  • PDF

특징 선택을 이용한 소프트웨어 재사용의 성공 및 실패 요인 분류 정확도 향상 (Improvement of Classification Accuracy on Success and Failure Factors in Software Reuse using Feature Selection)

  • 김영옥;권기태
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권4호
    • /
    • pp.219-226
    • /
    • 2013
  • 특징 선택은 기계 학습 및 패턴 인식 분야에서 중요한 이슈 중 하나로, 분류 정확도를 향상시키기 위해 원본 데이터가 주어졌을 때 가장 좋은 성능을 보여줄 수 있는 데이터의 부분집합을 찾아내는 방법이다. 즉, 분류기의 분류 목적에 가장 밀접하게 연관되어 있는 특징들만을 추출하여 새로운 데이터를 생성하는 것이다. 본 논문에서는 소프트웨어 재사용의 성공 요인과 실패 요인에 대한 분류 정확도를 향상시키기 위해 특징 부분 집합을 찾는 실험을 하였다. 그리고 기존 연구들과 비교 분석한 결과 본 논문에서 찾은 특징 부분 집합으로 분류했을 때 가장 좋은 분류 정확도를 보임을 확인하였다.

소형 모사 장비의 데이터를 이용한 선박용 전기 추진 모터의 고장 유형별 진동 신호의 분류 (Classification of Vibration Signals for Different Types of Failures in Electric Propulsion Motors for Ships Using Data from Small-Scale Apparatus)

  • 유승열;장준교;전민성;이재철;강동훈;이순섭
    • 대한조선학회논문집
    • /
    • 제60권6호
    • /
    • pp.441-449
    • /
    • 2023
  • With the enforcement of environmental regulations by the International Maritime Organization, the market for eco-friendly ships is expanding, and ships using electric propulsion devices are emerging as a promising solution. Many studies have been conducted to predict the failure of ships, but most of them are mainly research on the main diesel engine of ships. As the ship's propulsion method changes, new data is needed to predict the failure of electric propulsion ships. In this paper aims to analyze the failure characteristics of the electric propulsion system in consideration of the difference in the type of failure between the internal diesel engine and the electric propulsion system. The ship's propulsion unit assumed a DC motor and a signal pattern for normal conditions and general failure modes, but the failure record of the electric propulsion device operated on the actual ship was not available, so it generated a failure signal for small electric motor equipment to identify the failure signal. Assuming unbalance, misalignment, and bearing failure, which are the primary failure modes of the ship's electric motor, a failure signal was generated using a "rotator vibration data generator," and the frequency band, size, and phase difference of the measured vibration signal were analyzed to analyze the characteristics of each failure condition. Finally, the characteristics of each failure condition were identified so that the signals according to the failure type could be classified.

기중방전의 특성분석과 Kohonen network에 의한 방전원의 패턴분류 (Properties and classification of air discharge by Kohonen network)

  • 강성화;박영국;이광우;김완수;이용희;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.704-707
    • /
    • 1999
  • Partial discharge(PD) in air insulated electric power systems is responsible for considerable power lossesfrom high voltage transmission lines. PD in air often leads to deterioration of insulation by the combined action of the discharge ions bombarding the surface and the action of chemical compounds that are formed by the discharge and may give rise to interference in ommunication systems. PD can indicate incipient failure. Thus understanding and classification of PD in air is very important to discern source of PD. In this paper, we investigated PD in air by using statical method. We classified air discharge with corona, surface discharge and cavity discharge by source of discharge. we used the mean pulse-height phase distribution $H_{qmean}(\psi)$, the max pulse-height phase distribution $H_{qmax}(\psi)$ , the pulse count phase distribution $H_n(\psi)$ and the max pulse height vs. repetition rate $H_{q}(n)$ for analysis PD pattern. We used statistical operators, such as skewness(S+. S-1, kurtosis(K+, K-), mean phase(AP+. AP-), cross-correlation factor(CC) and asymmetry from the distribution.

  • PDF

소양인체질병증 임상진료지침: 흉격열병 (Clinical Practice Guideline for Soyangin Disease of Sasang Constitutional Medicine: Chest-Heat congested (Hyunggyeok-yeol) Symptomatology)

  • 박혜선;황민우;이의주
    • 사상체질의학회지
    • /
    • 제26권3호
    • /
    • pp.262-271
    • /
    • 2014
  • Objectives This research was proposed to present Clinical Practice Guideline(CPG) for Soyangin Disease of Sasang Constitutional Medicine (SCM) ; Chest-Heat congested(Hyunggyeok-yeol) Symptomatology. Methods This CPG was developed by the national-wide experts committee consisting of SCM professors. First, collection and organization of literature related to SCM such as Donguisusebowon, Text book of SCM, Clinical Guidebook of SCM and Fundamental research to standardize diagnosis of Sasang Constitutional Medicine was performed. Secondly, journals related to clinical trial or Human complementary medicine of SCM were searched. Finally, 4 articles were selected and included in CPG for Chest-Heat congested(Hyunggyeok-yeol) Symptomatology of Stomach Heat-based Interior Heat disease in Soyangin disease. Results & Conclusions CPG of Chest-Heat congested(Hyunggyeok-yeol) symptomatology in Soyangin disease includes classification, definition and standard symptoms of each pattern. Chest-Heat congested(Hyunggyeok-yeol) symptomatology is classified into mild and moderate pattern by severity. Chest-Heat(Hyunggyeok-yeol) symptomatology Mild pattern is classified into Chest-Heat congested(Hyunggyeok-yeol) initial pattern and Chest-Heat congested(Hyunggyeok-yeol) advanced pattern. And Chest-Heat congested (Hyunggyeok-yeol) moderate pattern is classified into Clear Yang Failure of Stomach(Weguck-cheongyang Bulsagnseung) pattern (Upper wasting-thirst(Sangso) pattern), Clear Yang Failure of Large Intestine (Daejang-cheongyang Bulsangseung) pattern (Middle wasting-thirst (Jungso) pattern).

인공신경망을 이용하여 하드웨어 다중 센서 신호 검증을 위한 패리티 공간 및 패턴인식 방법 (Parity Space and Pattern Recognition Approach for Hardware Redundant System Signal Validation using Artificial Neural Networks)

  • 윤태섭
    • 제어로봇시스템학회논문지
    • /
    • 제4권6호
    • /
    • pp.765-771
    • /
    • 1998
  • An artificial neural network(NN) technique is developed for hardware redundant sensor validation. Since the measurement space is a continuous space with many operating regions, it is difficult to train a NN to correctly detect failure in an accurate measurement system. A conventional backpropagation NN is modified to include an additional preprocessing layer that extracts classification features from scalar measurements. This feature extraction means transform the measurement space to parity space. The NN is independent of the state variable being measured, the instrument range, and the signal tolerance. This NN resembles the parity space approach to signal validation, except that analytical parity equations are unneeded and the NN pattern recognition capability is utilized for decision making.

  • PDF

Reliable Fault Diagnosis Method Based on An Optimized Deep Belief Network for Gearbox

  • Oybek Eraliev;Ozodbek Xakimov;Chul-Hee Lee
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권4호
    • /
    • pp.54-63
    • /
    • 2023
  • High and intermittent loading cycles induce fatigue damage to transmission components, resulting in premature gearbox failure. To identify gearbox defects, numerous vibration-based diagnostics techniques, using several artificial intelligence (AI) algorithms, have recently been presented. In this paper, an optimized deep belief network (DBN) model for gearbox problem diagnosis was designed based on time-frequency visual pattern identification. To optimize the hyperparameters of the model, a particle swarm optimization (PSO) approach was integrated into the DBN. The proposed model was tested on two gearbox datasets: a wind turbine gearbox and an experimental gearbox. The optimized DBN model demonstrated strong and robust performance in classification accuracy. In addition, the accuracy of the generated datasets was compared using traditional ML and DL algorithms. Furthermore, the proposed model was evaluated on different partitions of the dataset. The results showed that, even with a small amount of sample data, the optimized DBN model achieved high accuracy in diagnosis.

고등학교 1학년 함수단원 문제해결에서의 오류에 대한 분석 (An analysis of errors in problem solving of the function unit in the first grade highschool)

  • 문혜영;김응환
    • 한국학교수학회논문집
    • /
    • 제14권3호
    • /
    • pp.277-293
    • /
    • 2011
  • 본 논문은 수학문제해결 과정에서 고등학교 1학년 학생들이 공통적으로 범하는 실수 즉 오류를 분석을 통하여 수학의 교수학습방법의 보완을 위한 범례를 제시하고자 한다. 교사들 에게 제공되는 학생들의 수학적 지식에 대한 이해 정도 및 쉽게 빠지는 오류, 수학문제에 접근하는 방법 및 잘못된 해결 전략 등의 정보는 대체로 학생들의 오류를 분석함으로써 얻어 질 수 있다. 실제로 많은 학생들이 고교수학을 어렵게 느끼는데 그 중 특히 '함수'문제에서 막연한 어려움과 부담감을 느끼며 함수와 관련된 문제풀이에서 많은 실패를 겪고 있다. 구체 적으로 본 연구에서는 고등학교 1학년 학생들의 함수단원 문제해결 과정에서 보이는 오류를 분석하여 함수단원 수학문제해결능력을 키우고자 충남의 ${\bigcirc}{\bigcirc}$고등학교 1학년 학생 90명을 대상으로 함수단원 8문제로 구성된 검사지를 풀게 하고 그것을 토대로 오류를 분석하였다. 그 결과 학생들의 오류에서 몇 가지 공통적인 패턴이 있음을 발견하고 이것을 7가지 오류 분류 패턴을 설정하고 이를 분석하여 이를 보완할 수 있는 방법을 탐구하였다. 본 연구에서 나타난 결과를 토대로 학교현장에 투입하여 수학교육의 개선에 도움이 되길 기대한다.

  • PDF

계층적 군집분석을 이용한 반도체 웨이퍼의 불량 및 불량 패턴 탐지 (Wafer bin map failure pattern recognition using hierarchical clustering)

  • 정주원;정윤서
    • 응용통계연구
    • /
    • 제35권3호
    • /
    • pp.407-419
    • /
    • 2022
  • 반도체는 제조 공정이 복잡하고 길어 결함이 발생될 때 빠른 탐지와 조치가 이뤄져야 결함으로 인한 손실을 최소화할 수 있다. 테스트 공정을 거쳐 구성된 웨이퍼 빈 맵(WBM)의 체계적인 패턴을 탐지하고 분류함으로써 문제의 원인을 유추할 수 있다. 이 작업은 수작업으로 이뤄지기 때문에 대량의 웨이퍼를 단 시간에 처리하는 데 한계가 있다. 본 논문은 웨이퍼 빈 맵의 정상 여부를 구분하기 위해 계층적 군집 분석을 활용한 새로운 결함 패턴 탐지 방법을 제시한다. 제시하는 방법은 여러 장점이 있다. 군집의 수를 알 필요가 없으며 군집분석의 조율 모수가 적고 직관적이다. 동일한 크기의 웨이퍼와 다이(die)에서는 동일한 조율 모수를 가지므로 대량의 웨이퍼도 빠르게 결함을 탐지할 수 있다. 소량의 결함 데이터만 있어도 그리고 데이터의 결함비율을 가정하지 않더라도 기계학습 모형을 훈련할 수 있다. 제조 특성상 결함 데이터는 구하기 어렵고 결함의 비율이 수시로 바뀔 수 있기 때문에 필요하다. 또한 신규 패턴 발생시에도 안정적으로 탐지한다. 대만 반도체 기업에서 공개한 실제 웨이퍼 빈 맵 데이터(WM-811K)로 실험하였다. 계층적 군집 분석을 이용한 결함 패턴탐지는 불량의 재현율이 96.31%로 기존의 공간 필터(spatial filter)보다 우수함을 보여준다. 결함 분류는 혼합 유형에 장점이 있는 계층적 군집 분석을 그대로 사용한다. 직선형과 곡선형의 긁힘(scratch) 결함의 특징에 각각 주성분 분석의 고유값과 2차 다항식의 결정계수를 이용하고 랜덤 포레스트 분류기를 이용한다.