• Title/Summary/Keyword: failure parameters

Search Result 1,945, Processing Time 0.024 seconds

Seismic behavior of composite walls with encased steel truss

  • Wu, Yun-tian;Kang, Dao-yang;Su, Yi-ting;Yang, Yeong-bin
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.449-472
    • /
    • 2016
  • This paper studies the seismic behavior of reinforced concrete (RC) walls with encased cold-formed and thin-walled (CFTW) steel truss, which can be used as an alternative to the conventional RC walls or steel reinforced concrete (SRC) composite walls for high-rise buildings in high seismic regions. Seven one-fourth scaled RC wall specimens with encased CFTW steel truss were designed, manufactured and tested to failure under reversed cyclic lateral load and constant axial load. The test parameters were the axial load ratio, configuration and volumetric steel ratio of encased web brace. The behaviors of the test specimens, including damage formation, failure mode, hysteretic curves, stiffness degradation, ductility and energy dissipation, were examined. Test results indicate that the encased web braces can effectively improve the ductility and energy dissipation capacity of RC walls. The steel angles are more suitable to be used as the web brace than the latticed batten plates in enhancing the ductility and energy dissipation. Higher axial load ratio is beneficial to lateral load capacity, but can result in reduced ductility and energy dissipation capacity. A volumetric ratio about 0.25% of encased web brace is believed cost-effective in ensuring satisfactory seismic performance of RC walls. The axial load ratio should not exceed the maximum level, about 0.20 for the nominal value or about 0.50 for the design value. Numerical analyses were performed to predict the backbone curves of the specimens and calculation formula from the Chinese Code for Design of Composite Structures was used to predict the maximum lateral load capacity. The comparison shows good agreement between the test and predicted results.

Long-Tail Watchdog Timer for High Availability on STM32F4-Based Real-Time Embedded Systems (STM32F4 기반의 실시간 임베디드 시스템의 가동시간 향상을 위한 긴 꼬리 와치독 타이머 기법)

  • Choi, Hayeon;Yun, Jiwan;Park, Seoyeon;Kim, Yesol;Park, Sangsoo
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.6
    • /
    • pp.723-733
    • /
    • 2015
  • High availability is of utmost importance in real-time embedded systems. Temporary failures due to software or hardware faults should not result in a system crash. To achieve high availability, embedded systems typically use a combination of hardware and software techniques. A watchdog timer is a hardware component in embedded microprocessors that can be used to automatically reset the processor if software anomalies are detected. The embedded system relies on a single watchdog timer, however, can be permanently disabled if the timer is not properly configured, e.g. falling into an indefinite loop. STM32F4 provides two different types of watchdog timer in terms of timing accuracy and robustness. In this paper, we propose a hybrid approach, called long-tail watchdog timer, to utilize both timers to achieve self-reliance in embedded systems even though one of timers fails. Experimental results confirm that the proposed approach successfully handles various failure scenarios and present performance comparisons between single watchdog timer and hybrid approach in terms of configuration parameters of watchdog timers in STM32F4, counter value and window size.

Construction and Operation Characteristics of the Automated Lightning Warning System Based on Detections of Cloud-to-Ground Discharge and Atmospheric Electric Field (낙뢰와 대기전계의 탐지를 기반으로 하는 자동낙뢰경보시스템의 구성과 운용특성)

  • Shim, Hae-Sup;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.11
    • /
    • pp.82-88
    • /
    • 2013
  • It is important to give lightning warning prior to a cloud-to-ground (CG) discharge within an Area of Concern (AOC) because most of lightning damage and victim are usually occurred by the first lightning in the AOC. The aim of this study is to find the optimal operation conditions of the automated lightning warning systems in order to make the best use of the available data. In this paper, the test-operated results of the automated lightning alert and risk management system (ALARM) based on detections of CG discharge and eletrostatic field and optimized at probability of lightning have been described. It was possible to obtain the following warning performance parameters: probability of detection (POD), false alarm ratio (FAR), probability of lightning (POL) and failure-to-warn rate (FTW). The data obtained from trial operation for 5months were not sufficient but the first analysis of domestic lightning warning was carried out. We have observed that the evaluated statistical results through trial operation depend on the various factors such as analysis methods and criteria, topographical conditions, etc. Also we suggest some methods for improvement of POL and POD including the finding of the optimal electric field threshold level to be used, based on the high values of FAR and FTW found in this work.

Reliability Analysis of cooler in Thermal Observation Device (열상감시장비의 냉각기 신뢰도 분석)

  • Hong, Seok-Jin;Jung, Yun-Sik;Kim, Jin-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.432-436
    • /
    • 2016
  • The cooler, which is the main part in a Thermal Observation Device (TOD), makes the TOD function by reducing the temperature. As the cooler is imported, overseas enterprises presented 20,000 hours as the operation time and the military have used the cooler as presented. However, failures have occurred occasionally after mass production stage. Therefore, we need to analyze the MTBF of the TOD cooler. So, military and defense industry companies collected the failure data of the TOD cooler. We analyze the MTBF of the TOD cooler using survival probability function and failure data. We find the optimal distribution by applying parametric method and estimate parameters. We determine that the Log-logistic distribution is the most appropriate for this data. Also, we analyze the reliability per hour of the TOD cooler. The result of MTBF of the TOD cooler was higher than that of presented by oversee enterprises.

Elasto-plastic Analysis and In-situ Measurement on Rock Behaviors with Stepwise Excavation of the Steep Soft Seam at a Great Depth (심부 급경사 연약층의 채굴 진행에 따른 주변 암반 거동의 탄소성 해석 및 현장계측)

  • 정소걸;신중호
    • Tunnel and Underground Space
    • /
    • v.14 no.4
    • /
    • pp.295-303
    • /
    • 2004
  • For the deep underground excavation site with the geological complexity of soft seam and hard rock, the numerical analysis and in-situ measurement on the behaviors of roadway and surrounding rock according to stepwise excavation of the steep soft seam are carried out. The strata behavior is modeled using elasto-plastic FEM considering the empirical failure criteria of Hoek & Brown and the strain-softening model. Hydraulic pressure capsule, MPBX and tape extensometer are installed around the roadway for the in-situ measurement of rock stress and deformation. Despite the complexity of geology and excavation procedure, the elasto-plastic analysis considering the empirical failure criteria of Hoek & Brown and the strain-softening model shows good agreement with the in-situ measurement. Comparison of numerical modeling with in-situ measurement enables to predict the behaviors of the roadway and to obtain design parameters for the excavation and support at depth.

Analysis of Factors Affecting the Slope Stability of Uncontrolled Waste Landfill (비위생 폐기물 매립지 사면의 안정성에 관한 영향인자 분석)

  • Yoo, Han-Kyu;Choi, Bong-Hyuck
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.1
    • /
    • pp.5-12
    • /
    • 2002
  • The effects of ground water level, shear strength parameters of refuse, and geological condition of ground on the slope stability of uncontrolled waste landfill were studied. The Janbu method of slices based on the limit equilibrium method was used to calculate the minimum factor of safety with respect to slope stability of landfill. The analytical results showed that the factor of safety for a fully dried condition of landfill increased 2.4~2.8 times as great as that for a fully saturated condition of landfill. Under the condition of actual ground water level, the factor of safety linearly increased with increasing both cohesion and internal friction angle of refuse. Also, when the potential failure surface passed through the underlying layer, the factor of safety and shape of potential failure surface were found to depend on geological conditions of underlying layer.

  • PDF

An Experimental Study on the Effective Strain of Reinforced Concrete Beams Strengthened by Fiber Reinforced Polymer (FRP로 보강된 철근콘크리트 보의 유효 변형률 예측에 대한 실험적 연구)

  • Hwang, Hyun-Bok;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.145-151
    • /
    • 2007
  • The shear failure modes of FRP strengthened concrete beams are quite different to those of the beams strengthened with steel stirrups. When the beams are externally wrapped with FRP composites, many beams fail in shear due to concrete crushing before the FRP reaches its rupture strain. In order to predict the shear strength of such beams, the effective strain of the FRP must be blown. This paper presents the results of an experimental study on the performance of reinforced concrete beams externally wrapped with FRP composites and infernally reinforced with steel stirrups. The main parameters of the tests were FRP reinforcement ratio, the type of fiber material (carbon or glass) and configuration (continues sheets or strips). The experimentally observed effective strain of the FRP was compared with the strain calculated using a proposed method.

Seismic vulnerability assessment of a historical building in Tunisia

  • El-Borgi, S.;Choura, S.;Neifar, M.;Smaoui, H.;Majdoub, M.S.;Cherif, D.
    • Smart Structures and Systems
    • /
    • v.4 no.2
    • /
    • pp.209-220
    • /
    • 2008
  • A methodology for the seismic vulnerability assessment of historical monuments is presented in this paper. The ongoing work has been conducted in Tunisia within the framework of the FP6 European Union project (WIND-CHIME) on the use of appropriate modern seismic protective systems in the conservation of Mediterranean historical buildings in earthquake-prone areas. The case study is the five-century-old Zaouia of Sidi Kassem Djilizi, located downtown Tunis, the capital of Tunisia. Ambient vibration tests were conducted on the case study using a number of force-balance accelerometers placed at selected locations. The Enhanced Frequency Domain Decomposition (EFDD) technique was applied to extract the dynamic characteristics of the monument. A 3-D finite element model was developed and updated to obtain reasonable correlation between experimental and numerical modal properties. The set of parameters selected for the updating consists of the modulus of elasticity in each wall element of the finite element model. Seismic vulnerability assessment of the case study was carried out via three-dimensional time-history dynamic analyses of the structure. Dynamic stresses were computed and damage was evaluated according to a masonry specific plane failure criterion. Statistics on the occurrence, location and type of failure provide a general view for the probable damage level and mode. Results indicate a high vulnerability that confirms the need for intervention and retrofit.

Critical Cleaning Requirements for Flip Chip Packages

  • Bixenman, Mike;Miller, Erik
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.43-55
    • /
    • 2000
  • In traditional electronic packages the die and the substrate are interconnected with fine wire. Wire bonding technology is limited to bond pads around the peripheral of the die. As the demand for I/O increases, there will be limitations with wire bonding technology. Flip chip technology eliminates the need for wire bonding by redistributing the bond pads over the entire surface of the die. Instead of wires, the die is attached to the substrate utilizing a direct solder connection. Although several steps and processes are eliminated when utilizing flip chip technology, there are several new problems that must be overcome. The main issue is the mismatch in the coefficient of thermal expansion (CTE) of the silicon die and the substrate. This mismatch will cause premature solder Joint failure. This issue can be compensated for by the use of an underfill material between the die and the substrate. Underfill helps to extend the working life of the device by providing environmental protection and structural integrity. Flux residues may interfere with the flow of underfill encapsulants causing gross solder voids and premature failure of the solder connection. Furthermore, flux residues may chemically react with the underfill polymer causing a change in its mechanical and thermal properties. As flip chip packages decrease in size, cleaning becomes more challenging. While package size continues to decrease, the total number of 1/0 continue to increase. As the I/O increases, the array density of the package increases and as the array density increases, the pitch decreases. If the pitch is decreasing, the standoff is also decreasing. This paper will present the keys to successful flip chip cleaning processes. Process parameters such as time, temperature, solvency, and impingement energy required for successful cleaning will be addressed. Flip chip packages will be cleaned and subjected to JEDEC level 3 testing, followed by accelerated stress testing. The devices will then be analyzed using acoustic microscopy and the results and conclusions reported.

  • PDF

A Study on the Stability Estimation Procedure for Reinforced Pillar of Twin Tunnel (병설터널 보강 필라의 안정성 평가방법에 관한 연구)

  • Baek, Seungcheol;Jang, Busik;Lee, Taegyu;Lee, Sungmin;Hwang, Jungsoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.81-91
    • /
    • 2009
  • Recently, twin-tunnel is often designed in the aspects of disaster prevention and economical reasons. However, the design cases and the studies are relatively insufficient. By the twin-tunnel excavation, deviate stresses of pillar between tunnels are increased and the increased stresses induce the instability of the twin-tunnel. In this study, numerical analyses about the twin-tunnel behaviour were conducted with varying ground strength, width of pillar and depth of earth cover and a series of regression analyses were carried out by using the results of numerical analyses for the twin-tunnel. Based on the numerical analyses, an estimation method of derived stresses is suggested through the regression analyses. Also, based on the results of regression analyses, an quantitative estimation method considering the reinforcement effects is also suggested. Then various parametric studies were conducted to be considered the reinforcement type and various design parameters. Finally, the efficiency of the suggested method based on the Hoek-Brown Failure Criterion is verified through the results of parametric studies.

  • PDF