• Title/Summary/Keyword: failure detection equipment

Search Result 81, Processing Time 0.022 seconds

Field Applicability Study of Hull Crack Detection Based on Artificial Intelligence (인공지능 기반 선체 균열 탐지 현장 적용성 연구)

  • Song, Sang-ho;Lee, Gap-heon;Han, Ki-min;Jang, Hwa-sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.4
    • /
    • pp.192-199
    • /
    • 2022
  • With the advent of autonomous ships, it is emerging as one of the very important issues not only to operate with a minimum crew or unmanned ships, but also to secure the safety of ships to prevent marine accidents. On-site inspection of the hull is mainly performed by the inspector's visual inspection, and video information is recorded using a small camera if necessary. However, due to the shortage of inspection personnel, time and space constraints, and the pandemic situation, the necessity of introducing an automated inspection system using artificial intelligence and remote inspection is becoming more important. Furthermore, research on hardware and software that enables the automated inspection system to operate normally even under the harsh environmental conditions of a ship is absolutely necessary. For automated inspection systems, it is important to review artificial intelligence technologies and equipment that can perform a variety of hull failure detection and classification. To address this, it is important to classify the hull failure. Based on various guidelines and expert opinions, we divided them into 6 types(Crack, Corrosion, Pitting, Deformation, Indent, Others). It was decided to apply object detection technology to cracks of hull failure. After that, YOLOv5 was decided as an artificial intelligence model suitable for survey and a common hull crack dataset was trained. Based on the performance results, it aims to present the possibility of applying artificial intelligence in the field by determining and testing the equipment required for survey.

Simplified Machine Diagnosis Techniques Using ARMA Model of Absolute Deterioration Factor with Weight

  • Takeyasu, Kazuhiro;Ishii, Yasuo
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.4
    • /
    • pp.247-256
    • /
    • 2009
  • In mass production industries such as steel making that have large equipment, sudden stops of production process due to machine failure can cause severe problems. To prevent such situations, machine diagnosis techniques play important roles. Many methods have been developed focusing on this subject. In this paper, we propose a method for the early detection of the failure on rotating machine, which is the most common theme in the machine failure detection field. A simplified method of calculating autocorrelation function is introduced and is utilized for ARMA model identification. Furthermore, an absolute deterioration factor such as Bicoherence is introduced. Machine diagnosis can be executed by this simplified calculation method of system parameter distance with weight. Proposed method proved to be a practical index for machine diagnosis by numerical examples.

An Experimental Study on Fault Detection and Diagnosis Method for a Water Chiller Using Bayes Classifier (베이즈 분류기를 이용한 수냉식 냉동기의 고장 진단 방법에 관한 실험적 연구)

  • Lee, Heung-Ju;Chang, Young-Soo;Kang, Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.508-516
    • /
    • 2008
  • Fault detection and diagnosis(FDD) system is beneficial in equipment management by providing the operator with tools which can help find out a failure of the system. An experimental study has been performed on fault detection and diagnosis method for a water chiller. Bayes classifier, which is one of classical pattern classifiers, is adopted in deciding whether fault occurred or not. Failure modes in this study include refrigerant leakage, decrease in mass flow rate of the chilled water and cooling water, and sensor error of the cooling water inlet temperature. It is possible to detect and diagnose faults in this study by adopting FDD algorithm using only four parameters(compressor outlet temperature, chilled water inlet temperature, cooling water outlet temperature and compressor power consumption). Refrigerant leakage failure is detected at 20% of refrigerant leakage. When mass flow rate of the chilled and cooling water decrease more than 8% or 12%, FDD algorithm can detect the faults. The deviation of temperature sensor over $0.6^{\circ}C$ can be detected as fault.

Anomaly Diagnosis of Rotational Machinery Using Time-Series Vibration Data Based on Time-Distributed CNN-LSTM (시분할 CNN-LSTM 기반의 시계열 진동 데이터를 이용한 회전체 기계 설비의 이상 진단)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.11
    • /
    • pp.1547-1556
    • /
    • 2022
  • As mechanical facilities are interacting with each other, the failure of some equipment can affect the entire system, so it is necessary to quickly detect and diagnose the abnormality of mechanical equipment. This study proposes a deep learning model that can effectively diagnose abnormalities in rotating machinery and equipment. CNN is widely used for feature extraction and LSTMs are known to be effective in learning sequential information. In LSTM, the number of parameters and learning time increase as the length of input data increases. In this study, we propose a method of segmenting an input segment signal into shorter-length sub-segment signals, sequentially inputting them to CNN through a time-distributed method for extracting features, and inputting them into LSTM. A failure diagnosis test was performed using the vibration data collected from the motor for ventilation equipment installed at the urban railway station. The experiment showed an accuracy of 99.784% in fault diagnosis. It shows that the proposed method is effective in the fault diagnosis of rotating machinery and equipment.

Web-based Real Time Failure Diagnosis System Development for Induction Motor Bearing (유도전동기 베어링의 원거리 실시간 결함진단시스템 개발)

  • Kwon, Oh-Heon;Lee, Seung-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.1-8
    • /
    • 2005
  • The industrial induction motor is widely used in the rotating electrical machine for the transmission of power. It is very reliable equipment, but it could lead to the loss of production and lift when failure occurs. Therefore, the failure data is acquired and analyzed by attaching an exclusive instrument to existing induction motor. However, these instruments could lead to side effects, increasing the production costs, because they are very expensive. The purpose of this study is the development of an induction motor bearing failure diagnosis system constructed using LabVIEW which can be supplied the kernelled function, process monitoring and current signature analysis. In addition, the availability and reasonability of the constructed system was examined for an induction motor with failure defects in outer raceway and ball bearing. From the results, it shows that failure diagnosis system constructed is useful for real-time monitoring with detection of bearing defects over the web.

Development of fault detection and diagnosis system for the heat source apparatus of building air-conditioning system (공조시스템의 열원기기에 대한 고장검출 및 진단 시스템 개발)

  • Han, Dong-Won;Park, Jong-Soo;Chang, Young-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.30-35
    • /
    • 2008
  • This paper describes a fault detection and diagnosis (FDD) system developed for the heat source apparatus in building air-conditioning system. As HVAC&R systems in building become complex and instrumented with highly automated controllers, the processes and systems get more difficult for the operator to understand and detect the mal-functions. Poorly maintained, degraded, and improperly controlled equipment wastes an estimated 15% to 30% of energy used in commercial building. When operating a complex facility, FDD system is beneficial in equipment management to provide the operator with tools which can help in decision making for recovery from a failure of the system. Automated FDD for HVAC&R system has the potential to reduce energy and maintenance costs and improves comfort and reliability. Over the last decade there has been considerable research for developing FDD system for HVAC&R equipment. However, they are being made too much of a theoretical study, so only a small of FDD methods are deployed in the field. This study deduced an actual defect source for the heat source apparatus and suggested a low price FDD method which is ready to be deployed in the field.

  • PDF

Development of a Fault Detection and Diagnosis Algorithm Using Fault Mode Simulation for a Centrifugal Chiller (고장모사 시뮬레이션을 이용한 터보냉동기의 고장검출 및 진단 알고리즘 개발)

  • Han, Dong-Won;Chang, Young-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.10
    • /
    • pp.669-678
    • /
    • 2008
  • When operating a complex facility, Fault Detection and Diagnosis (FDD) system is beneficial in equipment management by providing the operator with tools which can help find out a failure of the system. In this research, FDD algorithm was developed using the general pattern classifier method that can be applied to centrifugal chiller system. The simulation model for a centrifugal chiller system was developed in order to obtain characteristic data of turbo chiller system under normal and faulty operation. We tested FDD algorithm of a centrifugal chiller using data from simulation model at full load performance and 60% part load performance. In this research, we presented fault detection method using a normalized distance. Sensitivity analysis of fault detection was carried out with respect to fault progress. FDD algorithm developed in this study was found to indicate each failure modes accurately.

A study on failure detection in 64MDRAM gate-polysilicon etching process (64MDRAM gate-polysilicon 식각공정의 이상검출에 관한 연구)

  • 차상엽;이석주;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1485-1488
    • /
    • 1997
  • The capacity of memory chip has increased vert quickly and 64MDRAM becomes main product in semiconductor manufacturing lines consists of many sequential processes, including etching process. although it needs direct sensing of wafer state for the accurae detching, it depends on indirect esnsing and sample test because of the complexity of the plasma etching. This equipment receives the inner light of etch chamber through the viewport and convets it to the voltage inetnsity. In this paper, EDP voltage signal has a new role to detect etching failure. First, we gathered data(EPD sigal, etching time and etchrate) and then analyzed the relationships between the signal variatin and the etch rate using two neural network modeling. These methods enable to predict whether ething state is good or not per wafer. For experiments, it is used High Density Inductive coupled Plasma(HDICP) ethcing equipment. Experiments and results proved to be abled to determine the etching state of wafer on-line and analyze the causes by modeling and EPD signal data.

  • PDF

Traffic Volume and Vehicle Speed Calculation Method for type of Sensor Failure of Automatic Vehicle Classification Equipment (AVC 장비의 센서고장 상황에 따른 교통량·통행 속도 산출 방법)

  • Kim, Min-heon;Oh, Ju-sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1059-1068
    • /
    • 2016
  • The current operation method for the AVC (Automatic Vehicle Classification) equipment does not generate vehicle speed, traffic volume and vehicle type information when part of the sensors has failed. Inefficiency of current methods would not use the collected data from the normal sensor. In this study was conducted research on the calculating method at the traffic volume and vehicle speed in the sensor failure AVC equipment. The failure situation of the sensor was classified into 4 types. Calculating the traffic volume and vehicle speed information for each type, and accuracy of these informations were analyzed. Analysis results, traffic volume was possible to calculate a highly accurate value (accuracy: 100%, 98%, 97%). In the case of speed, the accuracy of the calculated speed value reaches a level that can be accepted sufficiently (RMSE value is less than 16.8). So, using the methodology proposed in this study are expected to be able to increase the operational efficiency of the AVC equipment.

Design of Vehicle-mounted Loading and Unloading Equipment and Autonomous Control Method using Deep Learning Object Detection (차량 탑재형 상·하역 장비의 설계와 딥러닝 객체 인식을 이용한 자동제어 방법)

  • Soon-Kyo Lee;Sunmok Kim;Hyowon Woo;Suk Lee;Ki-Baek Lee
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.79-91
    • /
    • 2024
  • Large warehouses are building automation systems to increase efficiency. However, small warehouses, military bases, and local stores are unable to introduce automated logistics systems due to lack of space and budget, and are handling tasks manually, failing to improve efficiency. To solve this problem, this study designed small loading and unloading equipment that can be mounted on transportation vehicles. The equipment can be controlled remotely and is automatically controlled from the point where pallets loaded with cargo are visible using real-time video from an attached camera. Cargo recognition and control command generation for automatic control are achieved through a newly designed deep learning model. This model is designed to be optimized for loading and unloading equipment and mission environments based on the YOLOv3 structure. The trained model recognized 10 types of palettes with different shapes and colors with an average accuracy of 100% and estimated the state with an accuracy of 99.47%. In addition, control commands were created to insert forks into pallets without failure in 14 scenarios assuming actual loading and unloading situations.