• Title/Summary/Keyword: failure detection and isolation

Search Result 40, Processing Time 0.024 seconds

Reduction Method for the Risk of the Chemical Facilities by KS-RBI Program Supporting the Quantitative Cause Analysis (정량적 원인분석이 가능한 위험기반검사(KS-RBI)에 의한 화학설비의 위험도 경감방안)

  • Kim, Tae-Ok;Lee, Hern-Chang;Jo, Ji-Hoon;Kim, Kyu-Jung;Kwon, Hyuck-Myun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.110-117
    • /
    • 2008
  • The risks of the chemical facilities were estimated by the KS-RBI(Ver. 3.0) program supporting the quantitative cause analysis, and reduction method for the risks of the facilities was investigated. As a result, we could find that the risks of the facilities decrease with reducing the likelihood of failure (LOF) affected by demage mechanism, inspection number and effectiveness of inspection, and with reducing the consequence of failure (COF) affected by the ratings of the detection, isolation, and mitigation systems. Furthermore, high risks of the facilities would be decreased by reduction of the LOF and the COF simultaneously. Accordingly, the applied plant would be able to achieve the decrease of inspection and labor costs because of the decrease of consequences and inspection intervals through the reduction of risks.

  • PDF

Real-Time Model-Based Fault Diagnosis System for EHB System (EHB 시스템을 위한 실시간 모델 기반 고장 진단 시스템)

  • Han, Kwang-Jin;Huh, Kun-Soo;Hong, Dae-Gun;Kim, Joo-Gon;Kang, Hyung-Jin;Yoon, Pal-Joo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.173-178
    • /
    • 2008
  • Electro-hydraulic brake system has many advantages. It provides improved braking performance and stability functions. It also removes complex mechanical parts for freedom of design, improves maintenance requirements and reduces unit weight. However, the EHB system should be dependable and have back-up redundancy in case of a failure. In this paper, the model-based fault diagnosis system is developed to monitor the brake status using the analytical redundancy method. The performance of the model-based fault diagnosis system is verified in real-time simulation. It demonstrates the effectiveness of the proposed system in various faulty cases.

Development of Korean Maintainability-Prediction Software for Application to the Detailed Design Stages of Weapon Systems (무기체계의 상세설계 단계에 적용을 위한 한국형 정비도 예측 S/W 개발)

  • Kwon, Jae-Eon;Kim, Su-Ju;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.102-111
    • /
    • 2021
  • Maintainability is a major design parameter that includes availability as well as reliability in a RAM (reliability, availability, maintainability) analysis, and is an index that must be considered when developing a system. There is a lack of awareness of the importance of predicting and analyzing maintainability; therefore, it is dependent on past-experience data. To improve the utilization rate, maintainability must be managed as a key indicator to meet the user's requirements for failure maintenance time and to reduce life-cycle costs. To improve the maintainability-prediction accuracy in the detailed design stage, we present a maintainability-prediction method that applies Method B of the Military Standardization Handbook (MIL-HDBK-472) Procedure V, as well as a Korean maintainability-prediction software package that reflects the system complexity.

Use of IMS-RT-PCR for the Rapid Isolation and Detection of Hepatitis A Virus from the Swine Feces (IMS-RT-PCR을 활용한 육성돈 분변으로부터 간염 A형 바이러스의 신속순수분리 및 검출법 연구)

  • Lee, Hee-Min;Kim, Duwoon
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.638-642
    • /
    • 2012
  • Human pathogenic viruses such as hepatitis A and E virus (HAV and HEV), which lead to acute liver failure and death, are foodborne pathogens associated with the consumption of virus-contaminated meats, filter-feeding bivalves, fruits, and salads. Two of the three swine farms examined in this study had HAV and HEV positive stool samples in a nested RT-PCR assay. The use of the immunomagnetic separation (IMS) facilitated the separation of HAV through interactions between the ligand on the virion surface and the antibody from the swine feces containing both HAV and HEV. The nested RT-PCR analysis was performed for the detection of HAV obtained from hepatocarcinoma cell line (PLC/PRF/5) contaminated with eluent fraction of IMS. This indicated that IMS has the potential to simultaneously isolate and concentrate target viruses by changing antibodies linked on the magnetic beads.

Two-Failure Gps Raim by Parity Space Approach (패러티 공간을 이용한 2개 GPS 파라미터 고장진단)

  • Yoo, Chang-Sun;Ahn, Iee-Ki;Lee,Sang-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.52-60
    • /
    • 2003
  • In aviation navigation using GPS, requirements on availability and integrity must be absolutely satisfied. Current study on accomplishing this integrity includes RAIM(Receiver Autonomous Integrity Monitoring), monitoring integrity internaIly in GPS receiver itself. Parity space technique as one of RAIM techniques has shown the advantages in fault detection and isolation due to each use of its magnitude and direction under the assumption of one fault. ln case of multiple fault, as biases in errors interact decreasing the effect of multiple fault in parity space, the exact fault detection and identification(FDI) may be difficult to be conducted. This paper focuses on FDI study on two faults and explains why parity space techniques applied on single fault is not adequate to the application of multiple fault case and shows that extended parity space technique may improve the performance of RAIM on two faults.

Fault Management Design Verification Test for Electrical Power Subsystem and Attitude and Orbit Control Subsystem of Low Earth Orbit Satellite (저궤도위성의 전력계 및 자세제어계 고장 관리 설계 검증시험)

  • Lee, Sang-Rok;Jeon, Hyeon-Jin;Jeon, Moon-Jin;Lim, Seong-Bin
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.14-23
    • /
    • 2013
  • Fault management design of the satellite describes preparations for failures which can occur during operational phase. Fault management design contains detection and isolation function of anomaly, and also it contains function to maintain the satellite in safe condition until the ground station finds out a cause of failure and takes a countermeasure. Unlike normal operation, safing operation is automatically performed by Power Control and Distribution Unit and Integrated Bus Management Unit which loads Flight Software without intervention of ground station. Since fault management operation is automatical, fault management logic and functionality of relevant hardware should be thoroughly checked during ground test phase, and error which is similar to actual should be carefully applied without damage. Verification test for fault management design is conducted for various subsystems of satellite. In this paper, we show the design process of fault management design verification test for Electrical Power Subsystem and Attitude and Orbit Control Subsystem of Low Earth Orbit satellite flight model and the test results.

Estimation of Effect Zone for the Establishment of Damage-Minimizing Plan of Chemical Plants (화학공장의 사고피해 최소화 대책수립을 위한 영향범위 평가)

  • Lee, Hern-Chang;Han, Seong-Hwan;Cho, Ji-Hoon;Shin, Dong-Il;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.69-74
    • /
    • 2011
  • As a way to propose a method for the establishment of practical damage-minimizing plan for chemical plants, the release scenario was established by using API-581 BRD and the effect zone was estimated by the KS-RBI program supporting the quantitative cause analysis. And the risk assessment was performed. As a result, we found that to minimize the damage of a chemical plant, it is effective to use four release hole diameters (small, medium, large and rupture) and release time estimated according to the classes of detection and isolation systems. In addition, it can be safely said that through appling the damage areas considering weighted average by failure frequency and worst-case simultaneously, industrial sites can come up with the effective emergency response plan.

A Fault Management Design of Dual-Redundant Flight Control Computer for Unmanned Aerial Vehicle (무인기용 이중화 비행조종컴퓨터의 고장관리 설계)

  • Oh, Taegeun;Yoon, Hyung-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.5
    • /
    • pp.349-357
    • /
    • 2022
  • Since the flight control computer of unmanned aerial vehicle (UAV) is a flight critical equipment, it is necessary to ensure reliability and safety from the development step, and a redundancy-based fault management design is required in order to operate normally even a failure occurs. To reduce cost, weight and power consumption, the dual-redundant flight control system design is considered in UAV. However, there are various restrictions on the fault management design. In this paper, we propose the fault detection and isolation designs for the dual-redundant flight control computer to satisfy the safety requirements of an UAV. In addition, the flight control computer developed by applying the fault management design performed functional tests in the integrated test environment, and after performing FMET in the HILS, its reliability was verified through flight tests.

The method of development for enhancing reliability of missile assembly test set (유도탄 점검 장비의 신뢰성 향상을 위한 개발 방법)

  • Koh, Sang-Hoon;Han, Seok-Choo;Lee, Kye-Shin;Lee, You-Sang;Kim, Young-Kuk;Park, Dong-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.37-43
    • /
    • 2018
  • A developer solves problems with isolating failures if faults are detected when inspecting missiles using the missile assembly test set (MATS) and then resumes the testing. In order to identify faults, it is necessary to analyze the data coming from the equipment, but the information received may not be sufficient, depending on the inspection environment. In this case, the developer repeats the test until the problem is reproduced or checks the performance of each piece of equipment that is related to the fault. When this task is added, schedule management becomes problematic, and development costs rise. To solve this problem, we need to design a MATS in a systematic way to increase fault coverage while satisfying the required reliability. By designing the necessary processes for each procedure, it is possible to reduce the fault identification time when a fault is detected during operations. But it is not possible to guarantee 100% fault coverage, so we provide another method by comparing costs and effects. This paper describes a development method to enhance the reliability of the missile assembly test set; it describes the expected effects when it is adapted, and describes the limitations of this method.

Establishment of the High-Throughput Hair Roots' DNA Isolation System and Verification of Its Appicability for Hanwoo Traceability Using the 11 Microsatellite Makes (대량 모근 시료 DNA 분리 체계 확립과 11 microsatellite maker를 사용하는 한우 생산이력제로의 적용가능성 검증)

  • Lim, Hyun-Tae;Lee, Sang-Ho;Yoo, Chae-Kyoung;Sun, Du-Won;Cho, In-Cheol;Yoon, Du-Hak;Yang, Dae-Young;Cheong, Il-Cheong;Lee, Jung-Gyu;Jeon, Jin-Tae
    • Journal of agriculture & life science
    • /
    • v.44 no.6
    • /
    • pp.91-99
    • /
    • 2010
  • We used a multiplex PCR primer set composed of 11 microsatellite (MS) markers and two sexing markers for gender detection. Genomic DNA extracted from hair roots of 3,510 Hanwoo were genotyped. Based on the 11MS markers, no animals had identical genotypes(TGLA227, BM2113, TGLA53, ETF10, SPS115, TGLA122, ETH3, ETH225, BM1824 and INRA23). The expected probability of identity among genotypes of random individuals (PI), the probability of identity among genotypes from random half-sibs ($PI_{half-sibs}$) and among genotypes of random individuals, and the probability of identity among genotypes from random sibs ($PI_{sibs}$) were estimated as $1.31{\times}10^{-23}$, $2.52{\times}10^{-16}$and $1.09{\times}10^{-6}$, respectively using the API-CALC program, version 1.0. We successfully completed the genotype analysis of 3,510 Hanwoo with a 3.93% genotyping failure rate. It was revealed that extracting DNA from the hair root was a time-efficient and cost-effective method to collect specimens for DNA isolation from live animals. This method also minimized stress for the animals during specimen collection. Among the hair roots from the back, belly, upper tail and lower tail, 5~13 hair roots of the lower tail led to the best genotype analysis results. Finally, we established a 96-well-format method of DNA preparation applicable for high- throughput genotype analysis.