Browse > Article

Establishment of the High-Throughput Hair Roots' DNA Isolation System and Verification of Its Appicability for Hanwoo Traceability Using the 11 Microsatellite Makes  

Lim, Hyun-Tae (Division of Applied Life Science(BK21 program), Gyeongsang National Univ.)
Lee, Sang-Ho (Division of Applied Life Science(BK21 program), Gyeongsang National Univ.)
Yoo, Chae-Kyoung (Division of Applied Life Science(BK21 program), Gyeongsang National Univ.)
Sun, Du-Won (Division of Applied Life Science(BK21 program), Gyeongsang National Univ.)
Cho, In-Cheol (National Institute of Animal Science, R. D. A.)
Yoon, Du-Hak (National Institute of Animal Science, R. D. A.)
Yang, Dae-Young (Korea Institute for Animal Products Quality Evaluation)
Cheong, Il-Cheong (Hankyong National Univ.)
Lee, Jung-Gyu (Division of Applied Life Science(BK21 program), Gyeongsang National Univ.)
Jeon, Jin-Tae (Division of Applied Life Science(BK21 program), Gyeongsang National Univ.)
Publication Information
Journal of agriculture & life science / v.44, no.6, 2010 , pp. 91-99 More about this Journal
Abstract
We used a multiplex PCR primer set composed of 11 microsatellite (MS) markers and two sexing markers for gender detection. Genomic DNA extracted from hair roots of 3,510 Hanwoo were genotyped. Based on the 11MS markers, no animals had identical genotypes(TGLA227, BM2113, TGLA53, ETF10, SPS115, TGLA122, ETH3, ETH225, BM1824 and INRA23). The expected probability of identity among genotypes of random individuals (PI), the probability of identity among genotypes from random half-sibs ($PI_{half-sibs}$) and among genotypes of random individuals, and the probability of identity among genotypes from random sibs ($PI_{sibs}$) were estimated as $1.31{\times}10^{-23}$, $2.52{\times}10^{-16}$and $1.09{\times}10^{-6}$, respectively using the API-CALC program, version 1.0. We successfully completed the genotype analysis of 3,510 Hanwoo with a 3.93% genotyping failure rate. It was revealed that extracting DNA from the hair root was a time-efficient and cost-effective method to collect specimens for DNA isolation from live animals. This method also minimized stress for the animals during specimen collection. Among the hair roots from the back, belly, upper tail and lower tail, 5~13 hair roots of the lower tail led to the best genotype analysis results. Finally, we established a 96-well-format method of DNA preparation applicable for high- throughput genotype analysis.
Keywords
Hanwoo; Traceability; Microsatellite; Hair root; High-throughput; Genotyping;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Grosclaude, F., Aupetit, R.Y., Lefebvre, J. and Meriaux, J.C. 1995. Essao d' analyse des relations genetiques entre les races bovines francaises a I' aide du polymorphisme biochimique. Genet. Sel. Evol. 22: 317-338.
2 Kantanen, J., Olsaker, I., Adalsteinsson, S., Sandberg, K., Eythorsdottir, E., Pirhonen, K. and Holm, L.E. Temporal changes in genetic variation of North Europen cattle breeds. Anim. Genet. 30: 16-27.
3 Kim, K.S., Yeo, J.S. and Choi, C.B. 2002. Genetic diversity of north-east Asian cattle based on microsatellite data. Anim. Genet. 33: 201-204.   DOI   ScienceOn
4 Li, M.H., Sternbauer, K., Haahr, P.T. and Kantanen. 2005. Genetic components in contemporary Faroe Islands Cattle as revealed by microsatellite analysis. J. Anim. Breed. Genet. 122: 309-317.   DOI   ScienceOn
5 Lim, H. T., H. S. Min, W. G. Moon, J. B. Lee, J. H. Kim, I. C. Cho, H. G. Lee, Y. O. Lee, J. G. Lee, and J. T. Jeon. 2005. Analysis and Selection of Microsatellites Markers for Individual Traceability System in Hanwoo. J. of Animal Sci. and Technology. 47: 491-500.   DOI
6 Loftus, R.T., MacHugh, D.E., Ngere, L.O., Balain, D.S., Badi, A.M., Bradley, D. G. and Cunningham, E.P. Mitochondrial genetic variation in European, African an Indian cattle populations. Anim. Genet. 25: 265-271.
7 MacHugh, D. E., Loftus, R. T., Cunningham, P. and Bradley, D. G. 1998. Genetic structure of seven European cattle breeds assessed using 20 microsatellite markers. Anim. Genet. 29: 333-340.   DOI   ScienceOn
8 Mahe, M.F., Miranda, G., Queval, R., Bado, A., Souvenir Zafindrajaona, P. and Grosclaude, F. 1999. Genetic polymorphism of milk proteins in African Bos taurus and Bos indicus populations. Genet. Sel. Evol. 31: 239-253.   DOI
9 Mansfield, E.S., Robertson, J.M., Lebo, R.V., Lucero, M.Y., Mayrand, P.E., Rappaport, E., Parrella, T, Sartore, M., Surrey, S. and Fortina, P. 1993. Duchenne Becker muscular dystrophy carrier detection using quantitative PCR and fluorescence-based strategies. Am. J. Med. Genet. 48: 200-208.   DOI   ScienceOn
10 Manwell, C. and Baker, A.C.M. 1980. Biochemical classification of cattle. 2. Phylogenetic tree and specific status of the zebu. Anim. Blood. Groups. Bioechem. Genet. 11: 151-162.
11 Marshall, T. C., J. Slate, L. E. B. Kruuk, and J. M. Pemberton. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7: 639-655.   DOI   ScienceOn
12 Martin-Burriel, I., E. Garcia-Muro, and P. Zaragoza. 1999. Genetic diversity analysis of six Spanish native cattle breeds using microsatellites. Anim. Genet. 30: 177-182.   DOI   ScienceOn
13 Maudet, C., G. Luikart, and P. Taberlet. 2002. Genetic diversity and assignment tests among seven French cattle breeds based of microsatellite DNA analysis. J. Anim. Sci. 80: 942-950.
14 Medjudorc, I., W. Kustermann, P. Lazar, I. Russ, and F. Pirchner. 1994. Marker- derived phylogeny of European cattle supports demic expansion of agriculture. Anim. Genet. 25: 19-27.
15 Moazami-Goudarzi, K., D. Laloë, J. P. Furet, and F. Grosclaude. 1997. Analysis of genetic relationships between 10 cattle breeds with 17 microsatellite. Anim. Genet. 28: 338-345.   DOI   ScienceOn
16 Mommens, G., L. J. Peelman, A. Van zeveren, G. D'Ieteren, and N. Wissocq. 1999. Microsatellite variation between an African and five European taurine breeds results in a geographical phylogenetic tree with a bison outgroup. J. Anim. Breed. Genet. 116: 325-330.   DOI
17 Mutirangura, A. F., M. G. Greenberg, S. Butler, R. D. Malcolm, A. C. Nicholls, and D. H. Ledberrer. 1993. Multiplex PCR of three dinucleotide repeats in the Prader -Willi/Angelman critical resgion: molecular diagnosis and mechanism of uniparental disomy. Hum. Mol. Genet. 48: 200-208.
18 SAS. 2004. SAS/STAT User's Guide Version 9.1: Statistics. SAS inst., Inc., Cary, NC, USA.
19 Nijman, I. J., D. G. Bradley, O. Hanotte, M. Otsen, and J. A. Lenstra. 1999. Satellite DNA polymorphisms and AFLP correlate with Bos indicus-taurus hybridization. Anim. Genet. 30: 265-273.   DOI   ScienceOn
20 Queval, R., K. Moazami-Goudarzi, D. Laloe, J. C. Meriaux, and F. Grosclaude. Relations genetiques entre polulations de taurins ou zebus d' Afrique de l' Ouest et taurins europeens. Genet. Sel. Evol. 30: 367-383.
21 Schmid, M., N. Saitbekova, C. Gaillard, and G. Dolf. 1999. Genetic diversity in Swiss cattle breeds. J. Anim. Breed. Genet. 116: 1-8.   DOI   ScienceOn
22 Shuber, A. P., J. Skoletsky, R. Stern, and B. L. Handelin. 1993. Efficient 12-mutation testing in the CFTR gene: a general model for complex mutation analysis. Hum. Mol. Genet. 2: 153-158.   DOI   ScienceOn
23 Souvenir Zafindrajaona, P., V. Zeuh, K. Moazami- Goudarzi, D. Laloe, D. Bourzat, A. Idriss, and F. Grosclaude. 1999. Etude du statut phylogenetique du bovine Kouri du lac Tchad a 1'aide de marqueurs moleculaires. Rev. Elev. Med. Vet. Pays Trop. 52: 155-162.
24 Zhou G. L., H. G. Jin, G. Zhu, S. L. Guo, and Y. H. Wu. 2005. Genetic diversity analysis of five cattle breeds native to China using microsatellite. J. Genet. 84: 77-80.   DOI   ScienceOn
25 농림수산식품부 고시 제2009-26호. 2009. 소 및 쇠고기의 개체식별을 위한 DNA동일성검사방법
26 Bradley, D. G., D. E. Machugh, R. T. Loftus, R. S. Sow, C. H. Hoste, and E. P. Cunningham. 1994. Zebu-taurine variation in Y chromosomal DNA: a sensitive assay for genetic introgression in west African trypanotolerant cattle populations. Anim. Genet. 25: 7-12.
27 Ayres, K. L. and A. D. J. Overall. 2004. API-CALC 1.0: a computer program for calculating the average probability of identity allowing for substructure, inbreeding and the presence of close relatives. Molecular Ecology Notes 4: 315-318.   DOI   ScienceOn
28 Birren, B., E. D. Green, S. Klapholz, R. M. Myers, and J. Roskams. 1997. Genome Analysis: A Laboratory Manual (USA: Cold Spring Harbor Laboratory Press).
29 Blott, S. C., J. L. Williams, and C. S. Haney. 1998. Genetic relationships among European cattle breeds. Anim. Genet. 29: 273-282.   DOI   ScienceOn
30 Chamberlain, J.S., Gibbs, R.A., Ranier, J.E., Nguyen, P.N. and Caskey, C.T. 1988. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res. 16: 11141-11156.   DOI   ScienceOn
31 Ciampolini, R., Moazami-Goudarzi, K., Vaiman, D., Dillman, C., Mazzanti, E., Foulley, J.L., Leveziel, H. and Cianci, D. 1995. Individual multilocus genotypes using microsatellite polymorphisms to permit the analysis of the genetic variability within and between Italian beef cattle breeds. J. Anim. Sci. 73: 3259-3268.
32 Crisan, D. 1994. Molecular diagnostic testing for determination of myeloid lineage in acute leukemias. Ann. Clin. Lab. Sci. 24: 355-363.