• Title/Summary/Keyword: failure causes

Search Result 1,331, Processing Time 0.036 seconds

Application of Stepped Isothermal Methods to Lifetime Prediction of Geogrids (SIM을 적용한 성토보강용 지오그리드의 수명예측)

  • Koo, Hyun-Jin;Kim, You-Kyum;Kim, Dong-Whan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.1
    • /
    • pp.3-6
    • /
    • 2005
  • The failure of geogrids can be defined as an excessive creep strain which causes the collapse of slopes and embankments. In this study, the lifetime of knitted polyester geogrids was predicted by using SIM(Stepped Isothermal Methods using TTS principal) and statistical data analysis techniques. The results indicate that the creep strain was 8.74, 8.79, 8.80% with 2.16~2.20% of CV% at 75, 100, 114 years, respectively and the creep strain reaches 9.3% after 100 years of usage at $27^{\circ}C$ which meets the required lifetime(creep strain less than 10% after 100 years of usage) in the fields. The SIM method is shown to be effective in reduction of uncertainty associated with inherent variability of multi-specimen tests and shorter test times than conventional TTS(Time-Temperature Superposition).

  • PDF

Analysis on Failure Causes and Stability of Reinforced Earth Wall Based on a Field Case (현장사례를 이용한 보강토옹벽의 파괴원인 및 안정성 분석)

  • Hong, Kikwon;Han, Jung-Geun;Lee, Jong-Young;Park, Jai-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.1
    • /
    • pp.109-114
    • /
    • 2013
  • This paper describes the global stability of the reinforced earth wall, which was collapsed by heavy rainfall. The seepage analysis was conducted to confirm the change effect of groundwater level on slope with reinforced earth wall. The seepage analysis result confirmed that the change of groundwater level is greatly influenced by rainfall. According to the change of groundwater level, the global stability analysis with reinforced earth wall was conducted based on the results of seepage analysis. The safety factor of the slope was 0.476 when the wall is collapsed firstly. The collapse cause analyzed that soil strength was weaken because the ground was saturated by continuous rainfall. Therefore, the global stability, which is considered heavy rainfall, should be conducted at design and construction of reinforced earth wall.

[ $N_2O-O_2$ ] INHALATION SEDATION WITH SUCTION CATHETER IN FULL MOUTH BREATHING PATIENTS (구호흡 소아환자에서 흡인도관을 이용한 $N_2O-O_2$ 진정)

  • Yoon, Hyung-Bae
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.4
    • /
    • pp.589-594
    • /
    • 1999
  • There are some problems in inhalation sedation of non-cooperative pediatric patients. Usually the pediatric patients reject the nasal hood and there's no cooperation for administration of nitrous oxide gas. In mouth breathing patient, other technics of sedation such as intravenous or oral sedation or general anesthesia were recommended. Common causes of mouth breathing are common cold, allergic rhinitis, sinus problem, anatomical disorder, and habitual mouth-breathing. However in some patient not indicated the general anesthesia and high failure rate in oral and intravenous sedation. Administration of $N_2O-O_2$ with suction catheter was applied in full mouth breathing patient. Clinically effective sedation were occurred during procedure about 45 to 55 minutes. There's no any side effects by $N_2O-O_2$ inhalation sedation. The patients awoke at the end of the procedure and received 100% oxygen for 2-3 minutes. There's still some problems in use of the suction catheter such as air pollution of operation theater and elevate arterial carbon dioxide tension.

  • PDF

On the Evaluation of the dynamic Safety of the Ship's Cargo at Sea (항해중 선박 적재화물의 동적 안정성 평가에 관한 연구)

  • 김철승;김순갑
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.3 no.1
    • /
    • pp.33-49
    • /
    • 1997
  • One of the most important missons that are imposed on merchant ship at sea is to accomplish the safe transportation of cargo loaded. Recently, a study on the seakeeping performance has been carried out on the development of evaluation system related to the synthetic safety of a ship at sea. The seakeeping performance is the ship's ability sailing at, and executing its misson against adverse environmental factors successfully and safely. Until now, however, there has not been any method of quantitative evaluation on the dynamic safety of the ship's cargo loaded. In this regards, this paper has introduced the evaluation method of dynamic safety of the ship's cargo. In order to evaluate the dynamic safety of cargo, the vertical and lateral acceleration which causes the collapse, racking and local structure failure of cargo was adopted as the evaluation factors in the ship's motions. The response amplitude of ship's motions in regular waves is manipulated by NSM (New Strip Method) on a given 2,700 TEU full container vessel under the wind forces of 7, 8 and 9 Beaufort scale. Each response of ship's motions induced by NSM was applied to short-crested irregular waves for stochastic process on evaluation factors and then vertical and lateral acceleration of each cargo was compared with significant amplitude of each acceleration. A representative dangerous factor was determined by comparing permissible values of stacking and racking forces occurred typically to the vertical and transverse directions with the container strength required on ISO 1496 at the positions of forecastle, poop and ship's midship respectively. Through the occurrence probability of the determined factor by Rayleigh's probability density function, the dangerousness which limits loads on container's side wall as an evaluation was applied in judging of the danger of the ship's cargo loaded.

  • PDF

A dynamic human reliability assessment approach for manned submersibles using PMV-CREAM

  • Zhang, Shuai;He, Weiping;Chen, Dengkai;Chu, Jianjie;Fan, Hao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.782-795
    • /
    • 2019
  • Safety is always acritical focus of exploration of ocean resources, and it is well recognized that human factor is one of the major causes of accidents and breakdowns. Our research developed a dynamic human reliability assessment approach, Predicted Mean Vote-Cognitive Reliability and Error Analysis Method (PMV-CREAM), that is applicable to monitoring the cognitive reliability of oceanauts during deep-sea missions. Taking into account the difficult and variable operating environment of manned submersibles, this paper analyzed the cognitive actions of oceanauts during the various procedures required by deep-sea missions, and calculated the PMV index using human factors and dynamic environmental data. The Cognitive Failure Probabilities (CFP) were calculated using the extended CREAM approach. Finally, the CFP were corrected using the PMV index. This PMV-CREAM hybrid model can be utilized to avoid human error in deep-sea research, thereby preventing injury and loss of life during undersea work. This paper verified the method with "Jiaolong" manned submersible 7,000 m dive test. The"Jiaolong" oceanauts CR(Corrected CFP) is dynamic from 3.0615E-3 to 4.2948E-3, the CR caused by the environment is 1.2333E-3. The result shown the PMV-CREAM method could describe the dynamic human reliability of manned submersible caused by thermal environment.

An Analysis of the Reporting System of Public Record Production and Its Improvement Plan (기록물 생산현황 통보제도 운영 실태와 개선방안)

  • Wang, Ho-Sung;Seol, Moon-Won
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.18 no.1
    • /
    • pp.79-99
    • /
    • 2018
  • The system for reporting record production has been operated to collect and transfer the public records adequately since the enactment of the Public Records Management Act in 1999. The Act, which was revised in 2007, regulates automated reporting methods in which the production reporting files are generated in the records creation systems and transferred to the records management systems. However, only one type of record is being notified electronically among seven types, which should be notified under the Act. The remaining six types of records are laboriously reported using complicated templates. Furthermore, the current working electronic notification mechanism is also causing various errors mainly because of inadequate specifications. This study analyzes the causes of failure of the electronic notification through the electronic records systems and suggests some policies for its improvement.

Different Clinical Courses for Poisoning with WHO Hazard Class Ia Organophosphates EPN, Phosphamidon, and Terbufos in Humans (WHO 분류 1 등급 EPN, Phosphamidone, Terbufos 유기인계 중독환자의 임상 양상)

  • Mun, Jong Gu;Moon, Jeong Mi;Lee, Mi Jin;Chun, Byeong Jo
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • Purpose: Extremely hazardous pesticides are classified as World Health Organization (WHO) hazard class Ia. However, data describing the clinical course of WHO class Ia OP (organophosphate) poisonings in humans are very scarce. Here, we compare the clinical features of patients who ingested hazard class Ia OPs. Methods: This retrospective observational case study included 75 patients with a history of ingesting ethyl p-nitrophenol thio-benzene phosphonate (EPN), phosphamidon, or terbufos. The patients were divided according to the chemical formulation of the ingested OP. Data regarding mortality and the development of complications were collected and compared among groups. Results: There were no differences in the baseline characteristics and severity scores at presentation between the three groups. No fatalities were observed in the terbufos group. The fatality rates in the EPN and phosphamidon groups were 11.8% and 28.6%, respectively. Patients poisoned with EPN developed respiratory failure later than those poisoned with phosphamidon and also tended to require longer mechanical ventilatory support than phosphamidon patients. The main cause of death was pneumonia in the EPN group and hypotensive shock in the phosphamidon group. Death occurred later in the EPN group than in the phosphamidon group. Conclusion: Even though all three drugs are classified as WHO class Ia OPs (extremely hazardous pesticides), their clinical courses and the related causes of death in humans varied. Their treatment protocols and predicted outcomes should therefore also be different based on the chemical formulation of the OP.

OBSERVABILITY-IN-DEPTH: AN ESSENTIAL COMPLEMENT TO THE DEFENSE-IN-DEPTH SAFETY STRATEGY IN THE NUCLEAR INDUSTRY

  • Favaro, Francesca M.;Saleh, Joseph H.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.803-816
    • /
    • 2014
  • Defense-in-depth is a fundamental safety principle for the design and operation of nuclear power plants. Despite its general appeal, defense-in-depth is not without its drawbacks, which include its potential for concealing the occurrence of hazardous states in a system, and more generally rendering the latter more opaque for its operators and managers, thus resulting in safety blind spots. This in turn translates into a shrinking of the time window available for operators to identify an unfolding hazardous condition or situation and intervene to abate it. To prevent this drawback from materializing, we propose in this work a novel safety principle termed "observability-in-depth". We characterize it as the set of provisions technical, operational, and organizational designed to enable the monitoring and identification of emerging hazardous conditions and accident pathogens in real-time and over different time-scales. Observability-in-depth also requires the monitoring of conditions of all safety barriers that implement defense-in-depth; and in so doing it supports sensemaking of identified hazardous conditions, and the understanding of potential accident sequences that might follow (how they can propagate). Observability-in-depth is thus an information-centric principle, and its importance in accident prevention is in the value of the information it provides and actions or safety interventions it spurs. We examine several "event reports" from the U.S. Nuclear Regulatory Commission database, which illustrate specific instances of violation of the observability-in-depth safety principle and the consequences that followed (e.g., unmonitored releases and loss of containments). We also revisit the Three Mile Island accident in light of the proposed principle, and identify causes and consequences of the lack of observability-in-depth related to this accident sequence. We illustrate both the benefits of adopting the observability-in-depth safety principle and the adverse consequences when this principle is violated or not implemented. This work constitutes a first step in the development of the observability-in-depth safety principle, and we hope this effort invites other researchers and safety professionals to further explore and develop this principle and its implementation.

Parametric Study on Reinforced Concrete Columns under Blast Load (주철근의 개수 및 단면비에 따른 폭발하중을 받는 철근콘크리트 기둥의 해석적 연구)

  • Choi, Hosoon;Kim, Min-Sook;Lee, Young-Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.219-226
    • /
    • 2012
  • Columns are the key elements supporting load in structure. Column failure causes the structure to collapse. It is important to evaluate residual strength for damaged columns under blast load for preventing progressive collapse. In this paper, columns were investigated to compare the blast resistance on the change of the number of steel bars within the range of reinforcement ratio. And this study was carried out 4 different analytical models to evaluate effects of aspect ratio. The results indicate that the vertical strain was unaffected by the number of steel bars and aspect ratio. As the number of steel bars facing blast load increase, the blast resisting capacity of the columns was improved in the lateral strain. Also, the analysis results showed that a large moment of inertia of area, as compared to a small one would be superior in residual strength as well as force of restitution.

Widdrol Blocks 3T3-L1 Preadipocytes Growth and Differentiation Due to Inhibition of Mitotic Clonal Expansion

  • Yun, Hee-Jung;Kim, Jeong-Hwan;Jeong, Hyun-Young;Ji, Hyang-Hwa;Nam, Soo-Wan;Lee, Eun-Woo;Kim, Byung-Woo;Kwon, Hyun-Ju
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.806-813
    • /
    • 2012
  • Adipocyte differentiation is strongly associated with obesity, which causes metabolic disorders. In this study, we investigated the inhibitory effects of widdrol on 3T3-L1 preadipocyte growth and differentiation. Widdrol decreased lipid droplet accumulation and down-regulated adipogenic transcription factors such as C/$EBP{\alpha}$, C/$EBP{\beta}$, and $PPAR{\gamma}$. Widdrol blocked preadipocyte proliferation and differentiation through the inhibition of mitotic clonal expansion, which was accompanied by the failure of degradation of p21, a cyclin-dependent kinase inhibitor. Cell-cycle analysis clearly indicated that widdrol actively induces cell-cycle arrest at the G1-S phage transition, causing cells to remain in the preadipocyte state. Moreover, widdrol increased p21 expression and inhibited Rb phosphorylation in preadipocyte incubated in a hormone medium. Therefore, these findings clearly suggest that widdrol blocks preadipocyte growth and differentiation through the inhibition of mitotic clonal expansion by p21-and Rb-dependent G1 arrest and can be developed as a potent anti-adipogenic agent for reducing obesity.