• Title/Summary/Keyword: failure/failure mode

Search Result 2,234, Processing Time 0.025 seconds

Development of a Web-based Analysis Program for Reliability Assessment of Machine Tools (공작 기계의 신뢰성 평가를 위한 웹 기반 해석 프로그램 개발)

  • 강태한;김봉석;이수훈;송준엽;강재훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.369-374
    • /
    • 2004
  • Web-based analysis programs for reliability assessment of machine tools were developed in this study. First, the reliability data analysis program was developed to search for failure rate using failure data and reliability test data of mechanical part. Second, failure mode analysis was developed through performance tests like circular movement test vibration test for machine tools. This analysis program shows correlation between failure mode and performance test result. Third, tool life was predicted by correlation between flank wear and cutting time, using the extended Taylor tool life equation in turning data and the equivalently converted equation in order to apply ball endmill data to Taylor tool life equation in milling data. All the information related to input and result data can be stored in theses programs.

  • PDF

Experimental and analytical study on prestressed concrete hollow slabs with asymmetric boundary conditions

  • Ma, Haiying;Lai, Minghui;Xia, Ye
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.59-68
    • /
    • 2022
  • Prestressed prefabricated hollow core concrete slabs with spans of 5 m and 10 m are commonly used since last century and still in service due to the advantage of construction convenience and durability. However, the end slabs are regularly subjected to cracks at the top and fail with brittleness due to the asymmetric boundary conditions. To better maintain such widely used type of hollow core slabs, the effect of asymmetric constraint in the end slabs are systematically studied through detailed nonlinear finite element analyses and experimental data. Experimental tests of slabs with four prestressed tendons and seven prestressed tendons with different boundary conditions were conducted. Results observe three failure modes of the slabs: the bending failure mode, shear and torsion failure mode, and transverse failure mode. Detailed nonlinear finite element models are developed to well match the failure modes and to reveal potential damage scenarios with asymmetric boundary conditions. Recommendations regarding ultimate capacity of the slabs with asymmetric boundary conditions are made to ensure a safe and rational design of prestressed concrete hollow slabs for short span bridges.

The Failure Mode and Effects Analysis Implementation for Laser Marking Process Improvement: A Case Study

  • Deng, Wei-Jaw;Chiu, Chung-Ching;Tsai, Chih-Hung
    • International Journal of Quality Innovation
    • /
    • v.8 no.1
    • /
    • pp.137-153
    • /
    • 2007
  • Failure mode and effects analysis (FMEA) is a preventive technique in reliability management field. The successful implementation of FMEA technique can avoid or reduce the probability of system failure and achieve good product quality. The FMEA technique had applied in vest scopes which include aerospace, automatic, electronic, mechanic and service industry. The marking process is one of the back ends testing process that is the final process in semiconductor process. The marking process failure can cause bad final product quality and return although is not a primary process. So, how to improve the quality of marking process is one of important production job for semiconductor testing factory. This research firstly implements FMEA technique in laser marking process improvement on semiconductor testing factory and finds out which subsystem has priority failure risk. Secondly, a CCD position solution for priority failure risk subsystem is provided and evaluated. According analysis result, FMEA and CCD position implementation solution for laser marking process improvement can increase yield rate and reduce production cost. Implementation method of this research can provide semiconductor testing factory for reference in laser marking process improvement.

Prediction of Failure Behavior for Carbon Fiber Reinforced Composite Bolted Joints using Progressive Failure Analysis (점진적 파손해석을 이용한 탄소섬유강화 복합재료 볼트 조인트의 파손거동 예측)

  • Yoon, Donghyun;Kim, Sangdeok;Kim, Jaehoon;Doh, Youngdae
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.101-107
    • /
    • 2021
  • Composite structures have components and joints. Theses connections or joints can be potentially weak points in the structure. The failure mode of the composite bolted joint is designed as a bearing failure mode for structural safety. The load-displacement relation exhibits bearing failure mode shows a nonlinear behavior after the initial failure and progressive failure behavior. In order to accurately predict the failure behavior of composite bolted joints, this study modified the shear damage variable calculation process in the existing progressive failure analysis model. The results of the bearing stress-bearing strain of the composite bolted joint were predicted using the modified progressive failure analysis model, and the modified model was verified through comparison with the previous progressive analysis model.

A study on hydrodynamic characteristics for. construction progress of rubble mound breakwaters (사석제의 건설 공정설계를 위한 수리학적 특성에 관한 연구)

  • Kim, Hong-Jin;Ryu, Cheong-Ro;Kim, Heon-Tae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.317-322
    • /
    • 2003
  • The Sectional and Spatial failure modes are discussed using the experimental data with long crest wave and multi-directional waves considering the failure modes occurring around the rubble-mound breakwater. The spatial & sectional stability and failure mode around the rubble-mound structures with construction progress can be summarized as follows: 1) The rubble mound structures at basic construction step was occurred serious failures when ${\xi}$ was about 6.5. 2) It was clarified that the failure modes at the round head of detached breakwater are classified as failure by plunging breaking on the slope, failure by direct incident wave force and failure by scouring at the toe of the detached break water. 3) The failure mode was found in the lower wave height than the design wave by the breaker depth effect. 4) The failure on the slope were also developed at the lee side of the round head because diffracted wave propagated into the behind area by grouping effect of multi-directional irregular wave.

  • PDF

An Expected Loss Model for FMEA under Periodic Monitoring of Failure Causes (FMEA에서 주기적인 고장원인 감시 하의 기대손실 모형)

  • Kwon, Hyuck Moo;Hong, Sung-Hoon;Lee, Min Koo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.2
    • /
    • pp.143-148
    • /
    • 2013
  • In FMEA, occurrence and detectability are not related to only failure modes itself but also their causes. It is assumed that any failure occurs after at least one cause corresponding to failure occurs in advance. Occurrence of the failure mode is described by occurrence time of its cause and elapsed time to the actual failure. Under the periodic monitoring plan, the monitoring interval is another factor to determine the detectability and occurrence of each failure mode. When a failure cause occurs, the failure does not occur if the cause is identified and remedied before it actually occurs. Under this situation, we construct an economic model for prioritizing failure modes. The loss function is based on the unfulfilled mission period. We also provide an optimal monitoring plan with an illustrative example.

Creep characteristics and instability analysis of concrete specimens with horizontal holes

  • Xin, Yajun;Hao, Haichun;Lv, Xin;Ji, Hongying
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.563-572
    • /
    • 2018
  • Uniaxial compressive strength test and uniaxial compression creep one were produced on four groups of twelve concrete specimens with different hole number by RLW-2000 rock triaxial rheology test system. The relationships between horizontal holes and instantaneous failure stress, the strain, and creep failure stress, the strain, and the relationships between stress level and instantaneous strain, creep strain were studied, and the relationship between horizontal holes and failure mode was determined. The results showed that: with horizontal hole number increasing, compressive strength of the specimens decreased whereas its peak strain increased, while both creep failure strength and its peak strain decreased. The relationships between horizontal holes and compressive strength of the specimens, the peak strain, were represented in quadratic polynomial, the relationships between horizontal holes and creep failure strength, the peak strain were represented in both linear and quadratic polynomial, respectively. Instantaneous strain decreased with stress level increasing, and the more holes in the blocks the less the damping of instantaneous strain were recorded. In the failure stress level, instantaneous strain reversally increased, creep strain showed three stages: decreasing, increasing, and sharp increasing; in same stress level, the less holes the less creep strain rate was recorded. The compressive-shear failure was produced along specimen diagonal line where the master surface of creep failure occurred, the more holes in a block, the higher chances of specimen failure and the more obvious master surface were.

Machine Learning-Based Rapid Prediction Method of Failure Mode for Reinforced Concrete Column (기계학습 기반 철근콘크리트 기둥에 대한 신속 파괴유형 예측 모델 개발 연구)

  • Kim, Subin;Oh, Keunyeong;Shin, Jiuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.113-119
    • /
    • 2024
  • Existing reinforced concrete buildings with seismically deficient column details affect the overall behavior depending on the failure type of column. This study aims to develop and validate a machine learning-based prediction model for the column failure modes (shear, flexure-shear, and flexure failure modes). For this purpose, artificial neural network (ANN), K-nearest neighbor (KNN), decision tree (DT), and random forest (RF) models were used, considering previously collected experimental data. Using four machine learning methodologies, we developed a classification learning model that can predict the column failure modes in terms of the input variables using concrete compressive strength, steel yield strength, axial load ratio, height-to-dept aspect ratio, longitudinal reinforcement ratio, and transverse reinforcement ratio. The performance of each machine learning model was compared and verified by calculating accuracy, precision, recall, F1-Score, and ROC. Based on the performance measurements of the classification model, the RF model represents the highest average value of the classification model performance measurements among the considered learning methods, and it can conservatively predict the shear failure mode. Thus, the RF model can rapidly predict the column failure modes with simple column details.

Performance-based seismic design of eccentrically braced steel frames using target drift and failure mode

  • Li, Shen;Tian, Jian-bo;Liu, Yun-he
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.443-454
    • /
    • 2017
  • When eccentrically braced steel frames (EBFs) are in the desired failure mode, links yield at each layer and column bases appear plastically hinged. Traditional design methods cannot accurately predict the inelastic behavior of structures owing to the use of capacity-based design theory. This paper proposes the use of performance-based seismic design (PBSD) method for planning eccentrically braced frames. PBSD can predict and control inelastic deformation of structures by target drift and failure mode. In buildings designed via this process, all links dissipate energy in the rare event of an earthquake, while other members remain in elastic state, and as the story drift is uniform along the structure height, weak layers will be avoided. In this condition, eccentrically braced frames may be more easily rehabilitated after the effects of an earthquake. The effectiveness of the proposed method is illustrated through a sample case study of ten-story K-type EBFs and Y- type EBFs buildings, and is validated by pushover analysis and dynamic analysis. The ultimate state of frames designed by the proposed method will fail in the desired failure mode. That is, inelastic deformation of structure mainly occurs in links; each layer of links involved dissipates energy, and weak layers do not exist in the structure. The PBSD method can provide a reference for structural design of eccentrically braced steel frames.

Analysis of Laterally Loaded Piles Using Soil Resistance of Wedge Failure Mode (Wedge Failure Mode 형태의 반력을 이용한 수평재하 말뚝의 거동 분석)

  • Kim, Young-Ho;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.6
    • /
    • pp.59-72
    • /
    • 2009
  • The load distribution and deflection of offshore piles are investigated by lateral load-transfer curve method (p-y curve). Special attention is given to the soil-pile interaction and soil resistance of 3D wedge failure mode. A framework for determining a hyperbolic p-y curve is proposed based on theoretical analysis and experimental load test results. The methods for determining appropriate material parameters needed for constructing the proposed p-y curves are presented in this paper. Through comparisons with field case studies, it was found that the proposed method in the present study estimates reasonably the load transfer behavior of pile, and thus, the computed pile responses, such as bending moment and lateral displacement, agree well with the actual measured responses.