• Title/Summary/Keyword: fading, TCP

Search Result 20, Processing Time 0.025 seconds

TCP Throughput Analysis in the Portable Internet Wireless Environment with Consideration of Mobility (휴대 인터넷 무선 환경에서 이동성을 고려한 TCP 처리율 분석)

  • 원기섭;조용범;노재성;조성준
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.399-403
    • /
    • 2004
  • In this paper, we have analyzed the TCP throughput of Portable Internet system in 2.3GHz wireless environment with considering user's mobility speed. As the Portable Internet uses large cells compared to wireless LAM and supports user's nobility, we have adapted different wireless channel model to derive the TCP throughput of the system. We have assumed wireless channel is Rayleigh fading channel and the channel is modeled as two-state Markov model with which user's nobility speed can be considered by varying transition matrix of the model. from the simulation results, we have known that higher TCP throughput under the slow fading than under the fast fading. Because the TCP throughput is closely related to the sender's congestion control, the more congestion control is done by the sender, the lower TCP throughput we have. The more congestion control is caused in the sender under the fast fading than the slow fading so the lower TCP throughput is resulted in the fast fading environment.

  • PDF

A Study of TCP Performance with Snoop Protocol over Fading Wireless Links

  • Cho, Yang-Bum;Cho, Sung-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.4
    • /
    • pp.214-218
    • /
    • 2004
  • In this paper, we have analyzed TCP performance over wireless correlated fading links with and without Snoop protocol. For a given value of the packet error rate, TCP performance without Snoop protocol is degraded as the fading is getting fast (i.e. the user moves fast). When Snoop protocol is introduced in the base station, TCP performance is enhanced in most wireless environments. Especially the performance enhancement derived from using Snoop protocol is large in fast fading channel. This is because packet errors become random and sporadic in fast fading channel and these random packet errors (mostly single packet errors) can be compensated efficiently by Snoop protocol's local packet retransmissions. But Snoop protocol can't give a large performance improvement in slow fading environments where long bursts of packet errors occur. Concerning to packet error rate, Snoop protocol results in the highest performance enhancement in the channel with mid-high values of packet error rate. This means Snoop protocol cannot fully fulfill its ability under too low or too high packet error rate environments.

Performance Analysis of TCP Loss Recovery for Correlated Packet Losses over Wireless Networks (상호 연관성을 갖는 연속적인 패킷 손실에 대한 TCP 손실 복구 성능 분석)

  • 김범준;김석규;이재용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7B
    • /
    • pp.660-666
    • /
    • 2004
  • Overall TCP performance represented by end-to-end throughput is largely dependent upon its loss recovery performance. In particular non-congestion packet losses caused by transmission errors degrade TCP performance seriously. Using Markov process, we analyze TCP loss recovery performance for correlated packet losses caused by multipath fading. The results show that loss recovery performance can be severely affected by burstiness in packet losses, even if overall packet loss ratio is very low.

A Wireless TCP Protocol for Throughput Enhancement in Wireless Broadband (휴대 인터넷에서 처리율 향상을 위한 Wireless TCP 프로토콜)

  • Moon, Il-Young
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.57-59
    • /
    • 2006
  • In this paper, we investigate the wireless TCP protocol for throughput improvement in wireless Broadband. If the burst error duration of a wireless link is significantly long, retransmissions of lost packets by Snoop TCP are fulfilled mainly not by the receipt of duplicate acknowledgement (DUPACKs) but by local timer expiration. With the proposed scheme, Snoop TCP recovers packet losses fast by shortening the interval of local retransmissions based on the channel status. From the simulation results, we can show that the proposed scheme can improve TCP throughput considerably.

  • PDF

A Study on Local Retransmission Timeout of AT-Snoop Protocol (AT-Snoop 프로토콜의 지역 재전송 시간에 관한 연구)

  • Cho Yong bum;Cho Sung joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4B
    • /
    • pp.218-225
    • /
    • 2005
  • Although Snoop protocol can enhance TCP throughput efficiently in a wired-cum-wireless environment, it has a problem in performing local packet retransmissions under a burst error-prone wireless link. AT-Snoop protocol is proposed to cope with this Snoop protocol's problem by adopting adaptive timer. In this paper, TCP throughputs of AT-Snoop protocol have been analyzed with varying wireless link conditions and the ways of setting parameters of AT-Snoop protocol for higher TCP throughput are found out through computer simulations. From the simulation results, AT-Snoop protocol's two parameters, local retransmission threshold value and local retransmission timeout value, are closely related with the fading changing rate. To get higher TCP throughput, local retransmission threshold value and local retransmission timeout value should be set to a little bit larger values than average WSRTT(Wireless Smoothed Round Trip Time) and mean bad period of the wireless link, respectively.

An extended snoop for TCP in wireless links (무선망에서의 TCP 성능향상을 위한 snoop 개선)

  • 백선욱;홍석원;표미순
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10c
    • /
    • pp.604-606
    • /
    • 2004
  • 유선망과는 달리 무선망은 폐이딩(fading), 잡음, 간섭 등에 의해 상대적으로 높은 에러율을 보인다. 이러한 무선망에서 TCP를 적용할 경우, 무선망에서의 비트 에러에 의한 패킷 손실도 혼잡으로 간주하여 송신 윈도우를 줄임으로써 비효율적인 특성을 보인다. 이러한 무선 환경에서 기존TCP의 성능을 향상시키기 위해 1-TCP, M-TCP, snoop등 다양한 기법들이 연구되고 있는데, 그 중에서 snoop은 양단간의 의미를 유지하면서도 효율적인 기법으로 널리 알려져 있다 그러나, Snoop은 무선망에서 많은 패킷이 손실되는 경우에는 비효율적인데, 본 논문에서는 snoop을 개선하여 에러율이 높은 무선망 환경에서 효과적인 성능을 발휘하는 fast Snoop 기법을 제안한다 제안된 알고리즘을 시뮬레이션을 통해 기존의 Snoop과 비교하여 성능 개선 효과를 확인 하였다.

  • PDF

A study on improving TCP performance in mobile communication systems with a high transmission error (전송오류가 큰 이동통신 환경에서 TCP 성능 개선에 관한 연구)

  • 장재신
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9B
    • /
    • pp.813-822
    • /
    • 2003
  • Conventional TCPs are designed to work efficiently on wired network where any transmission errors rarely take place. However, the probability of transmission error in a wireless network is much higher than in a wired network, due to pass loss, multipath fading, and many kinds of interference. There were many researches on preventing the degradation of TCP performance in these wireless networks with bad channel condition. One of these researches is the SNOOP protocol which is link-layer solution for achieving high throughput of TCP. However, this SNOOP protocol is apt to retransmit some TCP segments unnecessarily, which could cause some increased traffic loads in a wireless network. In this paper, we propose a new algorithm to prevent the unnecessary retransmission of TCP segments and to achieve increased performance of TCP.

A Study of efficient Wireless TCP Transmission Using Consecutive Packet Loss and Zero Window Control (연속적인 패킷 손실 제어와 제로 윈도우 제어를 이용한 무선 TCP 전송 성능 향상 연구)

  • Kim, Sung-Chan;Jun, Moon-Seog
    • The KIPS Transactions:PartA
    • /
    • v.13A no.7 s.104
    • /
    • pp.573-580
    • /
    • 2006
  • The conventional transport layer protocol TCP is designed to work under condition of packet loss is due to the network congestion, so that it's suitable in the traditional wired network with fixed hosts but it's inefficient on the wireless network where the environment of fading, noise, and transmission error comes from interference. This result from the needless transmission control of the bit error is due to treats the packet loss as a packet congestion control in the wireless network. In this paper, we propose the advanced SNOOP protocol with the consecutive packet loss and TCP window control to avoid the needless congestion management algorithm in wireless network for the wireless TCP packet transmission enhancement. We verify the performance of the advanced module from the simulation experiment result.

A Study on Performance Improvement of TCP Using Packet Loss Discrimination Module in Ad-hoc Network (패킷 손실 구별 모듈을 이용한 Ad-hoc 통신망에서의 TCP 성능 향상에 관한 연구)

  • Cho, Nam-Ho;Lee, Jung-Min;Choi, Woong-Chul;Rhee, Seung-Hyong;Chung, Kwang-Sue
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.286-288
    • /
    • 2005
  • 최근 기지국(Base Station)의 도움 없이 이동 단말기 간의 다중 무선 홉을 사용하여 송,수신자 간의 데이터 전송을 가능하게 하는 Ad-hoc 통신망에 관한 연구가 활발히 진행되고 있다. 유선망과 달리 Ad-hoc 통신망은 무선 전송 매체를 사용하기 때문에 신호의 페이딩(Fading), 간섭(Interference), 잡음(Noise) 등에 의해 높은 BER(Bit Error Rate)이 발생하는 특징을 가지고 있다. 하지만, 현재 인터넷 상에서 광범위하게 사용되고 있는 전송 규약인 TCP(Transmission Control Protocol)는 유선망의 신뢰적인 전송 매체를 고려하여 개발된 프로토콜이기 때문에 TCP를 수정 없이 Ad-hoc 통신망에 적용할 경우 전송 성능이 저하되는 문제를 가지고 있다. 전송 성능이 저하되는 문제는 기존 TCP가 에러 발생의 원인을 혼잡에 의한 것으로 인식하고 불필요한 혼잡 제어를 하기 때문이다. 본 논문에서는 송신자가 에러 발생 원인을 구별하고, 그에 따라 전송률을 조절함으로써 Ad-hoc 망에서의 TCP성능 향상을 위한 방법을 제시하였다. 또한 ns-2 시뮬레이터를 이용한 실험을 통해 TCP의 성능이 제안된 알고리즘에 의해 향상되었음을 확인하였다

  • PDF

TCP Buffer Tuning based on MBT for High-Speed Transmissions in Wireless LAN (무선 랜 고속전송을 위한 최대버퍼한계 기반 TCP 버퍼튜닝)

  • Mun, Sung-Gon;Lee, Hong-Seok;Choo, Hyun-Seung;Kong, Won-Young
    • Journal of Internet Computing and Services
    • /
    • v.8 no.1
    • /
    • pp.15-23
    • /
    • 2007
  • Wireless LAN (IEEE 802.11) uses traditional TCP for reliable data transmission, But it brings the unintentional packet loss which is not congestion loss caused by handoff, interference, and fading in wireless LAN. In wireless LAN, TCP experiences performance degradation because it consumes that the cause of packet loss is congestion, and it decrease the sending rate by activating congestion control algorithm. This paper analyzes that correlation of throughput and buffer size for wireless buffer tuning. We find MBT (Maximum Buffer Threshold) which does not increase the throughput through the analysis, For calculation of MBT, we experiment the throughput by using high volume music data which is creased by real-time performance of piano. The experiment results is shown that buffer tuing based on MBT shows 20.3%, 21.4%, and 45.4% throughput improvement under 5ms RTT, 10ms RTT, and 20ms RTT, respectively, comparing with the throughput of operation system default buffer size, In addition, we describe that The setting of TCP buffer size by exceeding MBT does not have an effect on the performance of TCP.

  • PDF