• 제목/요약/키워드: factorization invariants

검색결과 2건 처리시간 0.016초

THE CATENARY DEGREE OF THE SATURATED NUMERICAL SEMIGROUPS WITH PRIME MULTIPLICITY

  • Meral Suer
    • 대한수학회보
    • /
    • 제60권2호
    • /
    • pp.515-528
    • /
    • 2023
  • In this paper, we formulate the set of all saturated numerical semigroups with prime multiplicity. We characterize the catenary degrees of elements of the semigroups we obtained which are important invariants in factorization theory. We also give the proper characterizations of the semigroups under consideration.

ON THE SETS OF LENGTHS OF PUISEUX MONOIDS GENERATED BY MULTIPLE GEOMETRIC SEQUENCES

  • Polo, Harold
    • 대한수학회논문집
    • /
    • 제35권4호
    • /
    • pp.1057-1073
    • /
    • 2020
  • In this paper, we study some of the factorization aspects of rational multicyclic monoids, that is, additive submonoids of the nonnegative rational numbers generated by multiple geometric sequences. In particular, we provide a complete description of the rational multicyclic monoids M that are hereditarily atomic (i.e., every submonoid of M is atomic). Additionally, we show that the sets of lengths of certain rational multicyclic monoids are finite unions of multidimensional arithmetic progressions, while their unions satisfy the Structure Theorem for Unions of Sets of Lengths. Finally, we realize arithmetic progressions as the sets of distances of some additive submonoids of the nonnegative rational numbers.