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THE CATENARY DEGREE OF THE SATURATED

NUMERICAL SEMIGROUPS WITH PRIME MULTIPLICITY

Meral Süer

Abstract. In this paper, we formulate the set of all saturated numerical

semigroups with prime multiplicity. We characterize the catenary degrees
of elements of the semigroups we obtained which are important invariants

in factorization theory. We also give the proper characterizations of the
semigroups under consideration.

1. Introduction

Researchers have been interested in two different aspects of non-unique fac-
torization invariants. Some were concerned with the lengths of the factor-
izations of an element and took into account the semi-factor property in a
half-factorial monoid that is allocated to all factorizations of the same length
of a given element. The others were concerned with the notions of the distance
between the factorizations. Considering the uses of the idea of the distance
between factorizations, the main focus was on the catenary and tame degrees.
In this study, we will deal with the second case. Every element of a cancellative
monoid is as a linear combination of its generators with non-negative integer
coefficients. But this combination is not unique. Each of these different ex-
pressions is called the factorization of that element. The catenary degree of an
element in the cancellative monoid describes the connection between different
factorizations and it is a powerful tool for understanding factorization theory.
Besides, the maximum value of all catenary degrees of all the elements in the
cancellative monoid is the catenary degree of the monoid itself.

Problems with non-unique factorizations of elements in integral domains and
commutative cancellative monoids have been a hot topic in the literature for
years ([15] and the citation list in [15]). Most of these studies focus on com-
binatorial constants which explain how these systems differ from the classical
concept of unique factorization. We see the earliest studies on this subject are
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on Krull domains and monoids [3,5, 10,11,13,14,16,20]. The recent studies in
this area evaluate these properties on numerical monoids [1, 5–8,12,18,19].

In the literature, a long list of studies can be found on the analysis of one-
dimensional analytically irreducible local domains via value semigroups [4].
One class of the numerical semigroups obtained with this approach is the class
of saturated numerical semigroups which has an important place. After char-
acterizing the saturated rings in terms of the value semigroups, the saturated
numerical semigroups appear in [9, 17]. Even though the concept of saturated
semigroups is included in the ring theory, it first attracted the attention of
semigroupist [24,28–31].

The structure of this article is as follows. In Section 2 we will include the
necessary definitions and notations that we will use for the main results and
proofs. In Section 3 we will find all saturated numerical semigroups with prime
multiplicity and fixed conductor (Theorem 3.5). Finally, in Section 4 we will
express the catenary degree of these semigroups (Theorem 4.2 and Theorem
4.3).

2. Definitions and preliminaries

Let Z and N be the set of integers and non-negative integers, respectively.
Let S be a non-empty subset of N. If S is a sub-monoid of N such that
N \ S < ∞, then S is called a numerical semigroup. The Frobenius number of
S, denoted by F (S), is the maximum element of Z \ S [21]. The least integer
s that provides s + n ∈ S for all n ∈ N is called the conductor of S, denoted
by c(S) (in short c). The conductor is actually 1 greater than the Frobenius
number of S [4].

Let ∅ ≠ A ⊂ N. The submonoid of (N,+) generated by A is expressed as:

⟨A⟩ = {n1a1 + · · ·+ nrar : n1, . . . , nr ∈ N, a1, . . . , ar ∈ A, r ∈ N \ {0}} .

If S = ⟨A⟩, then A is called a system of generators of S. Also, if no suitable
proper subset of A generates S, it is said that A is a minimal system of gen-
erators of S. It must be known that every numerical semigroup has a unique
minimal generator system with a finite number of elements [4, 25]. It is ad-
ditionally well known that gcd(A) = 1 if and only if S = ⟨A⟩ is a numerical
semigroup (where gcd stands for the greatest common divisor) [26]. If the min-
imal system of generators of S is A = {a1 < a2 < · · · < ar}, then a1, a2 and r
called the multiplicity, the ratio and the embedding dimension of S, these are
denoted by µ(S), R(S) and e(S), respectively. It is a fact that e(S) ≤ µ(S).
When S is a numerical semigroup with embedding dimension that is equal to
the multiplicity, S is said to be a MED-semigroup (where MED represents for
maximal embedding dimension). For n ∈ S \ {0}, the Apéry set of n in S is
defined as follows:

Ap(S, n) = {x ∈ S : x− n ̸= S} .
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Easily, it can be proved that

Ap(S, n) = {w0 = 0, w1, . . . , wn−1} ,

where wi = min {x ∈ S : x ≡ i (mod n)} for i = {0, 1, . . . , n− 1} (see for in-
stance [2, 26]).

A numerical semigroup S is called an Arf semigroup if for every s1, s2, s3 ∈ S
with s3 = min {s1, s2, s3}, the element s1 + s2 − s3 is also in S. A numerical
semigroup S is said to be saturated if the following condition is satisfied: if
s, s1, . . . , sr ∈ S where sr ≤ s for all i ∈ {1, . . . , r} and n1, . . . , nr ∈ Z, s1n1 +
· · ·+ srnr ≥ 0, then s+ s1n1 + · · ·+ srnr ∈ S. Let A be a nonempty subset of
N and a be a nonzero element of A, dA(a) is defined as

dA(a) = gcd {a′ ∈ A : a′ ≤ a} .

It is well known a numerical semigroup S is saturated if and only if s+dS(s) ∈ S
for all s ∈ S \ {0}. Also, any saturated numerical semigroup has the Arf
property due to its maximal embedding dimension [4, 9].

It can easily be seen by the definition that a numerical semigroup S is satu-
rated if and only if there exists a sequence of positive integers s1 < s2 < · · · < sr
such that gcd {s1, s2, . . . , sr} = 1 and gcd {s1, s2, . . . , si} ̸= gcd {s1, s2, . . . , si ,
si+1} for all i ∈ {1, 2, . . . , r − 1}. Then, {s1, s2, . . . , sr} is said to be a mini-
mal SAT-system of generators of S. In addition, if di = gcd {s1, s2, . . . , si} for
each i ∈ {1, . . . , r}, S is said to be a (d1, d2, . . . , dr)-semigroup. A saturated se-
quence of length k is known as a k-tuple of positive integers (d1, d2, . . . , dk) with
d1 > d2 > · · · > dk = 1 and di+1 divides di for all i ∈ {1, . . . , k − 1}. For a posi-
tive integer F , an F -saturated sequence is a saturated sequence (d1, d2, . . . , dk)
such that there exists at least one (d1, d2, . . . , dk)-semigroup with Frobenius
number F [24].

Let S = ⟨a1, . . . , ar⟩. The homomorphism

φ : Nr → S defined by φ(a1, . . . , ar) = n1a1 + · · ·+ nrar,

is the factorization homomorphism of S. Let the congruence σ be the kernel
congruence of φ (where aσb if φ(a) = φ(b)). The monoid S is isomorphic to
Nr/σ. The set of factorizations of s ∈ S is denoted by Z(s), and it is as
following:

Z(s) = φ−1(s) = {(n1, . . . , nr) ∈ Nr : n1a1 + · · ·+ nrar = s} .

For a factorization x = (x1, . . . , xr) in Z(s), the length of x is denoted by |x|,
and it is as follows:

|x| = x1 + · · ·+ xr.

The set of lengths of all factorizations of s is denoted by L(s), and it is as
following:

L(s) = {|x| : x ∈ Z(s)} = {m1, . . . ,ml} .
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The set L(s) has finite elements. Moreover, if S = N, there are elements with
more than one length. Let x = (x1, . . . , xr), y = (y1, . . . , yr) ∈ Nr be two
factorizations and

gcd(x, y) = (min {x1, y1} , . . . ,min {xr, yr})

be the common part of x and y. The distance between them is denoted by
dist(x, y), and it is as follows:

dist(x, y) = max {|x− gcd(x, y)|, |y − gcd(x, y)|} .

The support of x ∈ Nr is defined by supp(x), and it is as follows:

supp(x) = {i : xi ̸= 0, 1 ≤ i ≤ r} .

Let s ∈ S be such that s− si ∈ S. Then the set

Zi(s) = {x ∈ Z(s) : i ∈ supp(x)}

is a non-empty set. Let N ∈ N. A finite sequence z = z0, z1, . . . , zn−1, zn of a
factorization of s ∈ S is an N -chain if dist(zn−1, zi) ≤ N for each 1 ≤ i ≤ n.
The catenary degree of the element s is defined as to be the minimal N such
that there is an N -chain between any two factorizations of s, denoted by C(s).
The catenary degree of the numerical semigroup S is denoted by C(S), and it
is as follows:

C(S) = sup {C(s) : s ∈ S} ∈ N ∪ {∞}.
A presentation ρ for S is a subset of σ if σ is the least congruence containing

ρ (with respect to set inclusion). That is, a system of generators of σ. Since
finitely generated commutative monoid is finitely presented, every numerical
semigroup is also finitely presented [22]. Moreover, for numerical semigroups,
the concepts of minimality with respect to cardinality and set inclusion of a pre-
sentation coincide. Two elements a, b in Nr are ℜ-related if there exists a chain
a = z0, z1, . . . , zn−1, zn = b such that supp(zi−1)

⋂
supp(zi) ̸= ∅ for 1 ≤ i ≤ n.

It can easily be seen that this is an equivalence relation on Z(s) for s in S. The
number of factorizations of the elements of the numerical semigroup is finite,
and so the number of ℜ-classes in this set is also finite. The ℜ-classes are impor-
tant because they can construct a minimal representation of S. Let s ∈ S and
ℜs

1, . . . ,ℜs
ns

be different ℜ-classes of Z(s). Setm(s) = max
{
rs1, . . . , r

s
ns

}
, where

rsi = min {|z| : z ∈ ℜs
i}. Denote by m(S) = max {m(s) : s ∈ S and ns ≥ 2}.

We know that C(S) = m(S) [8].
For A,B ⊂ N, we set

A+B = {x+ y : x ∈ A, y ∈ B} and kA = A+A+ · · ·+A︸ ︷︷ ︸
k

.

3. The saturated numerical semigroups with prime multiplicity

In this section, we will calculate the set of all saturated numerical semigroups
with prime integer multiplicity and fixed conductor.
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Lemma 3.1 ([26]). Let S = ⟨a1, a2, . . . , ae⟩ be a numerical semigroup such
that a1 < a2 < · · · < ae. For x ∈ S \ {0} we have the following:

1. ♯Ap(S, x) = x (♯ stands for cardinality).
2. F (S) = max(Ap(S, x))− x.
3. {0, a2, . . . , ae} ⊂ Ap(S, a1).
4. S is a MED-semigroup if and only if Ap(S, a1) = {0, a2, . . . , ae}.

Lemma 3.2 ([27], Proposition 5). Let S and T be two saturated numerical
semigroups. Then S ∩ T is a saturated numerical semigroup.

Given a nonempty subset A of N such that gcd(A) = 1. It is well known that
the saturated numerical semigroups containing ⟨A⟩ are finite. The intersection
of all saturated numerical semigroups containing A is denoted by Sat(A). In
fact, Sat(A) is the smallest saturated numerical semigroup containing A. If
Sat(A) = S, A is called a SAT-system of generators of S. Moreover, if no
proper subset of A is a SAT-system of generators of S then A is called a
minimal SAT-system of generators of S.

Lemma 3.3 ([27], Theorem 6). Let n1 < n2 < · · · < nr be positive integers
such that

gcd {n1, n2, . . . , nr} = 1.

For every i ∈ {1, 2, . . . , r}, set di = gcd {n1, n2, . . . , ni} and for all j ∈{1, 2, . . . ,
r − 1} define

tj = max {t ∈ N : nj + tdi < dj+1} .

Then

Sat(n1, n2, . . . , nr) = {0, n1, n1 + d1, . . . , n1 + t1d1, n2, n2 + d2, . . . , n2 + t2d2,

. . . , nr−1, nr−1 + dr−1, . . . , nr−1 + tr−1nr−1,

nr, nr + 1,→}.

Lemma 3.4 ([27], Theorem 11). Let S be a saturated numerical semigroup.
Then {n1, n2, . . . , nr} = {n ∈ S \{0} : dS(n) ̸= dS(n

⋆) for all n⋆ < n, n⋆ ∈ S}
is the unique minimal SAT system of generators of S.

Let S be a numerical semigroup with conductor c and multiplicity µ. It is
known that c ̸≡ 1 (mod µ). Because, every nonnegative multiple of µ is in S,
but c− 1 is not in S.

Theorem 3.5. Let S be a numerical semigroup and p a prime integer. S is a
saturated numerical semigroup with multiplicity p and conductor c if and only
if S is one of the following:

(1) If c ≡ 0 (mod p), then ⟨p, c+ 1, c+ 2, . . . , c+ p− 1⟩.
(2) If c ≡ i (mod p), then ⟨p, c, c+1, . . . , c+p−i−1, c+p−i+1, . . . , c+p−1⟩

for i ∈ {2, 3, . . . , p− 1}.
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Proof. (⇐) (1) Let S be the following numerical semigroup with multiplicity p
and conductor c, c ≡ 0 (mod p):

S = ⟨p, c+ 1, c+ 2, . . . , c+ p− 1⟩.

If c ≡ 0 (mod p), then p | c. Therefore, c = kp for some k. Thus,

S = ⟨p, c+ 1, c+ 2, . . . , c+ p− 1⟩ = {0, p, 2p, . . . , (k − 1)p, kp,→} ,

where → denotes that all integers larger than kp are in the semigroup, that is

S = {0, p, 2p, . . . , (k − 1)p, kp,→}
= {0, p, 2p, . . . , (k − 1)p, kp} ∪ {kp+ 1, kp+ 2, . . . } .

If a ≤ c, then a = rp for some r. For a ∈ S \ {0}, we have dS(a) = p and

a+ dS(a) = rp+ p = (r + 1) p ∈ S.

If a > c, then dS(a) = 1. Thus, a + dS(a) = a + 1 > c and a + 1 ∈ S. Hence,
S is a saturated numerical semigroup.

(2) Let S be the following numerical semigroup with multiplicity p and
conductor c, c ≡ i (mod p) and i ∈ {2, 3, . . . , p− 1}:

S = ⟨p, c, c+ 1, . . . , c+ p− i− 1, c+ p− i+ 1, . . . , c+ p− 1⟩.

If c ≡ i (mod p), then p | (c− i). Therefore, c = kp+ i for some k. Thus,

S = ⟨p, c, c+ 1, . . . , c+ p− i− 1, c+ p− i+ 1, . . . , c+ p− 1⟩
= {0, p, 2p, . . . , kp, kp+ i →} .

If a < c, then a = tp for some t. For a ∈ S \ {0}, we have dS(a) = p and

a+ dS(a) = tp+ p = (t+ 1) p ∈ S.

If a ≥ c, then dS(a) = 1. Thus, a+ dS(a) = a+ 1 > c and a+ 1 ∈ S. So, S is
a saturated numerical semigroup.

(⇒) Let S be a saturated numerical semigroup with multiplicity a prime
integer p and conductor c. According to Theorem 3.4,

{p = n1, n2, . . . , nr} = {n ∈ S \ {0} : dS(n) ̸= dS(n
⋆) for all n⋆ < n, n⋆ ∈ S}

is the unique minimal SAT system of generators of S. Since p is a prime integer,
the minimal SAT system of generators of S is {p = n1, nr} or {p = n1, nr +1}.

(1) If the minimal SAT system of generators of S is {p = n1, nr + 1}, then
nr = kp for some k. By Theorem 3.3, t1 = max {t ∈ N : p+ tp < kp+ 1} =
k − 1 is calculated and obtained as

Sat(p = n1, nr + 1) = {0, p, p+ p, . . . , p+ (k − 1)p, nr + 1,→}
= {0, p, 2p, . . . , kp,→}.

Thus, c = kp for some k, in other words, when c ≡ 0 (mod p), we have S =
{0, p, 2p, . . . , kp,→} = ⟨p, c+ 1, c+ 2, . . . , c+ p− 1⟩.
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(2) If the minimal SAT system of generators of S is {p = n1, nr}, then
nr = kp+ i for some k and i ∈ {1, . . . , p− 1}. From Theorem 3.3,

t1 = max {t ∈ N : p+ tp < kp+ i} = k − 1

is calculated and obtained as

Sat(p = n1, nr) = {0, p, p+ p, . . . , p+ (k − 1)p, nr,→}
= {0, p, 2p, . . . , kp, kp+ i,→}.

Hence, c = kp + i for some k and i ∈ {2, 3, . . . , p− 1}, in other words, when
c ≡ i (mod p) we have S = {0, p, 2p, . . . , kp, kp + i,→} = ⟨p, c, c + 1, . . . , c +
p− i− 1, c+ p− i+ 1, . . . , c+ p− 1⟩. □

It is clear that by Theorem 3.5 we get the following corollary.

Corollary 3.6. There is only one saturated numerical semigroup with prime
multiplicity p and conductor c.

4. Catenary degree of saturated numerical semigroups

In this section, we will formulate the catenary degree of the saturated numer-
ical semigroups given in Theorem 3.5. Let S = ⟨a1 < a2 < · · · < ar⟩ and s ∈ S.
If Z(s) has more than one ℜ-classes, then s = w+ ai with w ∈ Ap(S, a1) \ {0}
and i ∈ {2, 3 . . . , r} [23].

Corollary 4.1 ([7], Corollary 3). Let S be a numerical semigroup which is
minimally generated by {a1, a2, . . . , ar} and s ∈ S. If s is minimal in S with
the condition C(s) = C(S), then s = w + ai with w ∈ Ap(S, a1) \ {0} and
i ∈ {2, 3 . . . , r}.

Henceforth in this section we will use ei to denote a vector that has 1 as the
ith component and 0’s elsewhere, namely, ei is the ith the standard unit vector
in Nr as

ei = (0, . . . , 1︸︷︷︸
ith component

, . . . , 0).

Theorem 4.2. Let S be a numerical semigroup and p be a prime integer. If
S is a saturated numerical semigroup with multiplicity p and conductor c ≡ 0
(mod p), then

C(S) = 2h+ 1,

where c = ph for some positive integer h.

Proof. By Theorem 3.5, if S is a saturated numerical semigroup with prime
multiplicity p and conductor c ≡ 0 (mod p), then S = ⟨p, c + 1, . . . , c +
p − 1⟩, where c = ph for some positive integer h. Therefore, Ap(S, p) =
{0, c+ 1, . . . , c+ p− 1} by Lemma 3.1. Let s ∈ S and aj be a minimal gen-
erator of S. Then s = w + aj with w ∈ Ap(S, p) \ {0} and j ∈ {2, 3, . . . , p}.
This implies that s = aj + ak for k and j ∈ {2, 3, . . . , p} since S is a saturated
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numerical semigroup. Therefore, we have aj + ak = 2c + (j + k − 2), where
ak = c+ (k − 1) and ak = c+ (j − 1) by the definition of S. Thus,

Ap(S, p) \ {0}+ {c+ 1, . . . , c+ p− 1} = {2c+ 2, . . . , 2c+ 2(p− 1)} .

Let’s consider the set of elements in the form s = aj + ak. We first want
to prove that every Z(s) has at least two ℜ-classes. Assume the contrary that
there is only one ℜ-class in Z(s).

(1) Let j = k. Then s = aj + ak = 2aj and 2aj /∈ Ap(S, p). Also,
s− p = 2aj − p ∈ S. Thus, one of the factorizations of s is 2ej , where
ej is the jth unit vector in Np. On the other hand,

s = aj + ak = 2aj = 2(c+ (j − 1)) = c+ (c+ 2(j − 1))

and let’s write hp instead of c

s = 2aj = hp+ (hp+ 2(j − 1)).

Since 2 ≤ 2(j − 1) ≤ 2(p− 1), we have two cases:
(a) If 2(j − 1) < p, then 2j − 1 ̸= j and one of the factorizations of s

is he1 + e2j−1.
(b) If 2(j − 1) > p, then s = 2aj = hp+ (hp+ 2(j − 1)) = hp+ (hp+

pr1 + s1) = (h+ r1)p+ (hp+ s1) for some positive integer r1 and
non-negative integer s1 < p. Where r1 = 1 and s1 < p− 1 due to
the values of i and j.

(i) If s1 = 0, then 1 ̸= j and one of factorizations of s is (h +
1)e1.

(ii) If s1 ̸= 0, then s1 + 1 ̸= j and one of factorizations of s is
(h+ 1)e1 + es1+1.

(2) Let j ̸= k. Then s = aj + ak and aj + ak /∈ Ap(S, p). Also, s− p ∈ S.
Thus, one of the factorizations of s is ej + ek. We also have two cases:
(a) If s = aj + ak ≡ 0 (mod p), then s = aj + ak = 2c+ j + k − 2 =

2hp+(j+k−2) and j+k−2 ≡ 0 (mod p). Therefore j+k−2 = pr1
for some positive integer s1. Since 2 < j + k − 2 < 2p− 4, where
r1 = 1 due to the values of i and k. Thus, one of the factorizations
of s is 2he1.

(b) If s = aj + ak ≡ s2 (mod p), then s = aj + ak = 2c + j + k −
2 = 2hp + (j + k − 2) and j + k − 2 ≡ s2 (mod p). Therefore,
j + k− 2 = pr2 + s2 for some positive integers r2 and s2. We now
have two cases:

(i) If j+k−2 < p, then s = aj +ak = 2c+ j+k−2 = 2hp+s2
and one of the factorizations of s is he1 + es2 .

(ii) If j+k−2 > p, then s = aj +ak = 2c+ j+k−2 = 2hp+s2
since j + k − 2 < 2p − 4. One of the factorizations of s is
(h+ 1)e1 + es2+2.

It is known that every element in the semigroup involved in one of its
minimal presentations has a set of factorizations with at least two ℜ-classes.



THE CATENARY DEGREE OF THE SATURATED NUMERICAL SEMIGROUPS 523

According to the above, Z(s) has at least two ℜ-classes. Namely, for every
x = (x1, . . . , xp), y = (y1, . . . , yp) in Z(s) we can write supp(x)

⋂
supp(y) = ∅.

Thus, gcd(x, y) = (0, . . . , 0). This means that dist(x, y) = max {|x|, |y|}. We
obtain the catenary degree of S with the maximum of the lengths of these
factorizations.

We finally conclude that the largest factorization length in Z(s) is obtained
when s = aj + ak ≡ 0 (mod p) for j ̸= k. Then the factorization of s is
(2h+1)e1. Since the catenary degree is the length of this factorization, C(S) =
2h+ 1 by Corollary 4.1. □

Theorem 4.3. Let S be a numerical semigroup and p a prime integer. If S
is a saturated numerical semigroup with multiplicity p and conductor c ≡ i
(mod p) for i ∈ {2, 3, . . . , p− 1}, then

C(S) =

{
2h+ 2 if i < p+2

2 ,

2h+ 3 if i > p+2
2 ,

where c = ph+ i for some positive integer h.

Proof. If S is a saturated numerical semigroup with prime multiplicity p and
conductor c ≡ i (mod p) for i ∈ {2, 3, . . . , p− 1}, then S = ⟨p, c, c+1, . . . , c+p−
i−1, c+p−i+1, . . . , c+p−1⟩, where c = ph+i for some positive integer h by The-
orem 3.5. Therefore, Ap(S, p) = {0, c, c+ 1, . . . , c+ p− i− 1, c+ p− i+ 1, . . . ,
c+ p− 1} by Lemma 3.1. Let s ∈ S and aj be a minimal generator of S,
s = w + aj with w ∈ Ap(S, p) \ {0} and j ∈ {2, 3 . . . , p}. Then s = aj + ak for
k, j ∈ {2, 3 . . . , p}, since S is a saturated numerical semigroup. Therefore, we
have

aj + ak =


2c+ (j + k)− 4 if 2 ≤ j, k ≤ p− i+ 1,
2c+ (j + k)− 3 if (2 ≤ j ≤ p− i+ 1 and p− i+ 2 ≤ k ≤ p)

or
(2 ≤ k ≤ p− i+ 1 and p− i+ 2 ≤ j ≤ p) ,

2c+ (j + k)− 2 if p− i+ 2 ≤ j, k ≤ p,

where

ak =

{
c+ k − 2 if 2 ≤ k ≤ p− i+ 1,
c+ k − 1 if p− i+ 2 ≤ k ≤ p,

and

aj =

{
c+ j − 2 if 2 ≤ j ≤ p− i+ 1,
c+ j − 1 if p− i+ 2 ≤ j ≤ p,

by the definition of S. Let’s consider the set of elements in the form s = aj+ak.
We first want to prove that every Z(s) has at least two ℜ-classes. Assume the
contrary that Z(s) has only one ℜ-class.

(1) Let j = k. Then s = aj + ak = 2aj and 2aj /∈ Ap(S, p). Also,
s− p = 2aj − p ∈ S. Thus, one of the factorizations of s is 2ej . On the



524 M. SÜER

other hand,

s = aj + ak = 2aj =

{
2c+ 2j − 4 if 2 ≤ j ≤ p− i+ 1,
2c+ 2j − 2 if p− i+ 2 ≤ j ≤ p,

and let’s write c = hp+ i instead of c

s = 2aj =

{
hp+ (hp+ i) + (i+ 2j − 4) if 2 ≤ j ≤ p− i+ 1,
hp+ (hp+ i) + (i+ 2j − 2) if p− i+ 2 ≤ j ≤ p.

(a) If 2 ≤ j ≤ p− i+ 1, then we have three cases.
(i) If 2 ≤ i+ 2j − 4 ≤ p− i− 1, then i+ 2j − 2 ̸= j and one of

the factorizations of s is he1 + ei+2j−2.
(ii) If p− i− 1 ≤ i+2j − 4 ≤ p− 1, then i+2j − 3 ̸= j and one

of the factorizations of s is he1 + ei+2j−3.
(iii) If i+2j−4 ≥ p, then s = 2aj = hp+(hp+ i)+(i+2j−4) =

hp+ (hp+ i) + pr1 + s1 = (h+ r1)p+ (hp+ i) + s1 for some
positive integer r1 and non-negative integer s1 < p. Since
max(2aj) = 2c+2p− 2i− 2 = hp+(hp+ i)+ p+(p− i− 2)
for 2 ≤ j ≤ p−i+1, we have r1 = 1 and s1 < p−i−2 due to
the values of i and j. Since 0 ≤ s1 ≤ p− i−2 ≤ p− i−1 and
s1+2 ̸= j, one of the factorizations of s is (h+1)e1+ es1+2.

(b) If p−i+2 ≤ j ≤ p, then i+2j−2 > p. Thus, s = 2aj = hp+(hp+
i)+(i+2j−2) = hp+(hp+i)+pr2+s2 = (h+r2)p+(hp+i)+s2 for
some positive integer r2 and non-negative integer s2 with s2 < p.
Since max(2aj) = 2c + 2p − 2 = hp + (hp + i) + (2p + i − 2) for
p− i+ 2 ≤ j ≤ p, we have r2 = 1 or r2 = 2 and s2 < p due to the
values of i and j. Then we have two cases.

(i) If 0 ≤ s2 ≤ p − i + 1, then s2 + 2 ̸= j and one of the
factorizations of s is (h+ r2)e1 + es2+2.

(ii) If p − i + 2 ≤ s2 ≤ p, then s2 + 1 ̸= j and one of the
factorizations of s is (h+ r2)e1 + es2+1.

When s = aj+ak = 2aj for j = k, other factorizations of s are different
from 2ej . These factorizations and 2ej have different ℜ-classes in Z(s).
In particular, this means that there is a factorization (s1, . . . , sp) of s
different from 2ej such that

supp((s1, . . . , sp))
⋂

supp(2ej) = ∅.

This contradicts with our assumption.
(2) Let j ̸= k. Then s = aj + ak and aj + ak /∈ Ap(S, p). Also, s− p ∈ S.

Thus, one of the factorizations of s is ej + ek. Then we have two cases.
(a) If s = aj + ak ≡ 0 (mod p), then aj + ak = pr3 for some positive

integer r3. Since 2c+ 2p− 2i ≤ aj + ak ≤ 2c+ (2p− 3), we have
r3 = 2h+2 or r3 = 2h+3 due to the values of i and j. Thus, one
of the factorizations of s is r3e1.
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(b) If s = aj + ak ≡ s4 (mod p), then aj + ak = pr4 + s4 for some
positive integers r4 and s4. Since 2c+1 ≤ aj+ak ≤ 2c+(2p−3), we
have 2h ≤ r4 ≤ 2h+2 and 1 ≤ s4 ≤ p−1 due to the values of i and
j. We can write aj +ak = pr4+s4 = (r4−h)p+(hp+ i)+(s4− i).
Therefore, we have three cases.

(i) If 0 ≤ s4 − i ≤ p − i + 1, then s4 − i + 2 ̸= k, j and one of
the factorizations of s is (r4 − h)e1 + es4−i+2.

(ii) If p − i + 2 ≤ s4 − i ≤ p, then s4 − i + 1 ̸= k, j and one of
the factorizations of s is (r4 − h)e1 + es4−i+1.

(iii) If s4 − i ≤ 0, then aj + ak = pr4 + s4 = (r4 − h − 1)p +
(hp + i) + (p + s4 − i). Since p − i + 1 ≤ p + s4 − i ≤ p
and p + s4 − i + 1 ̸= k, j one of the factorizations of s is
(r4 − h− 1)e1 + ep+s4−i+1.

When s = aj +ak for j ̸= k, other factorizations of s are different from
ej + ek. These factorizations and ej + ek have different ℜ-classes in
Z(s). This means in particular that there is a factorization (s1, . . . , sp)
of s that is different from ej + ek such that

supp((s1, . . . , sp))
⋂

supp(ej + ek) = ∅.

This contradicts with our assumption.

It is known that every element in the semigroup involved in one of its
minimal presentations has a set of factorizations with at least two ℜ-classes.
According to the above, Z(s) has at least two ℜ-classes. Namely, for every
x = (x1, . . . , xp), y = (y1, . . . , yp) ∈ Z(s) we can write supp(x)

⋂
supp(y) = ∅.

Thus, gcd(x, y) = (0, . . . , 0). This implies in particular that dist(x, y) =
max {|x|, |y|}. Therefore, the maximum of the lengths of these factorizations
gives the catenary degree of S.

We now conclude that the largest factorization length in Z(s) is obtained
when s = aj + ak ≡ 0 (mod p) for j ̸= k. Since p < c < c + 1 < · · · <
c+ p− i− 1 < c+ p− i+ 1 < · · · < c+ p− 1, the smallest s that meets these
conditions min(s) = min(aj + ak) = 2c + 2p − 2i. But we can find another
element s larger than 2c+ 2p− 2i. Namely, there is an element s in Z(s) with
2c + 2p − 2i < s < 2c + 2(p − 1). Since s = aj + ak ≡ 0 (mod p) for j ̸= k, if
there is, then s = aj + ak = 2c+2p− 2i+ pk < 2c+2(p− 1) for some positive
integers k. When we make the necessary cancellations, we get the inequality
i > pk+2

2 , and so k = 0 or k = 1 due to the values of i. Thus, we have two
cases:

(1) If i > pk+2
2 , then max(s) = max(aj + ak) = 2c + 2p − 2i + p =

2hp+2i+3p−2i = 2h+3, and the factorization of s is (2h+3)e1. Since
the catenary degree is the length of this factorization, C(S) = 2h + 3
by Corollary 4.1.

(2) In the other cases, namely i < p+2
2 , then max(s) = max(aj + ak) =

2c+2p− 2i = 2hp+2i+2p− 2i = 2h+2, and the factorization of s is
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(2h+2)e1. Since the catenary degree is the length of this factorization,
C(S) = 2h+ 2 by Corollary 4.1. □

Example 4.4. Consider the saturated numerical semigroup S with the multi-
plicity 5 and the conductor 33. Thus,

S = ⟨5, 33, 34, 36, 37⟩ = {0, 5, 10, 15, 20, 25, 30, 33,→} ,

where p = 5, i = 3 and h = 6. When we consider the numerical semigroup S,
n ∈ {33, 34, 36, 37} and w ∈ Ap(S, 5)\{0} = {33, 34, 36, 37} . Thus, w+n is in
{66, 67, 68, 69, 70, 71, 72, 73, 74}. Then the factorizations of these elements are
as follows:

Z(66) = {(0, 2, 0, 0, 0) , (6, 0, 0, 1, 0)} ,
Z(67) = {(0, 1, 1, 0, 0) , (6, 0, 0, 0, 1)} ,
Z(68) = {(0, 0, 2, 0, 0) , (7, 1, 0, 0, 0)} ,
Z(69) = {(0, 1, 0, 1, 0) , (7, 0, 1, 0, 0)} ,
Z(70) = {(14, 0, 0, 0, 0) , (0, 1, 0, 0, 1) , (0, 0, 1, 1, 0)} ,
Z(71) = {(0, 0, 1, 0, 1) , (7, 0, 0, 1, 0)} ,
Z(72) = {(0, 0, 0, 2, 0) , (7, 0, 0, 0, 1)} ,
Z(73) = {(0, 0, 0, 1, 1) , (8, 1, 0, 0, 0)} ,
Z(74) = {(0, 0, 0, 0, 2) , (8, 0, 1, 0, 0)} .

Each element of Z(s) is in the different ℜ-classes. We get the catenary degree
of S at 70. Then the catenary degree of S is 14. Moreover, since i = 3 < 5+2

2 =
p+2
2 and h = 6, it can easily be found that C(S) = 2h+2 = (2 · 6) + 2 = 14 by

Theorem 4.3.
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