DOI QR코드

DOI QR Code

THE CATENARY DEGREE OF THE SATURATED NUMERICAL SEMIGROUPS WITH PRIME MULTIPLICITY

  • Meral Suer (Department of Mathematics Batman University)
  • Received : 2022.04.12
  • Accepted : 2022.06.15
  • Published : 2023.03.31

Abstract

In this paper, we formulate the set of all saturated numerical semigroups with prime multiplicity. We characterize the catenary degrees of elements of the semigroups we obtained which are important invariants in factorization theory. We also give the proper characterizations of the semigroups under consideration.

Keywords

References

  1. F. Aguilo-Gost and P. A. Garcia-Sanchez, Factorization and catenary degree in 3-generated numerical semigroups, in European Conference on Combinatorics, Graph Theory and Applications (EuroComb 2009), 157-161, Electron. Notes Discrete Math., 34, Elsevier Sci. B. V., Amsterdam, 2009. https://doi.org/10.1016/j.endm.2009.07.026 
  2. A. Assi and P. A. Garcia-Sanchez, Numerical Semigroups and Applications, RSME Springer Series, 1, Springer, 2016. https://doi.org/10.1007/978-3-319-41330-3 
  3. P. Baginski, S. T. Chapman, R. Rodriguez, G. J. Schaeffer, and Y. She, On the Delta set and catenary degree of Krull monoids with infinite cyclic divisor class group, J. Pure Appl. Algebra 214 (2010), no. 8, 1334-1339. https://doi.org/10.1016/j.jpaa.2009.10.015 
  4. V. Barucci, D. E. Dobbs, and M. Fontana, Maximality properties in numerical semi-groups and applications to one-dimensional analytically irreducible local domains, Mem. Amer. Math. Soc. 125 (1997), no. 598, x+78 pp. https://doi.org/10.1090/memo/0598 
  5. V. Blanco, P. A. Garcia-Sanchez, and A. Geroldinger, Semigroup-theoretical characterizations of arithmetical invariants with applications to numerical monoids and Krull monoids, Illinois J. Math. 55 (2011), no. 4, 1385-1414 (2013). http://projecteuclid.org/euclid.ijm/1373636689 
  6. S. T. Chapman, M. Corrales, A. Miller, C. Miller, and D. Patel, The catenary and tame degrees on a numerical monoid are eventually periodic, J. Aust. Math. Soc. 97 (2014), no. 3, 289-300. https://doi.org/10.1017/S1446788714000330 
  7. S. T. Chapman, P. A. Garcia-Sanchez, and D. Llena, The catenary and tame degree of numerical monoids, Forum Math. 21 (2009), no. 1, 117-129. https://doi.org/10.1515/FORUM.2009.006 
  8. S. T. Chapman, P. A. Garcia-Sanchez, D. Llena, V. Ponomarenko, and J. C. Rosales, The catenary and tame degree in finitely generated commutative cancellative monoids, Manuscripta Math. 120 (2006), no. 3, 253-264. https://doi.org/10.1007/s00229-006-0008-8 
  9. F. Delgado de la Mata and C. A. Nunez Jimenez, Monomial rings and saturated rings, in Geometrie algebrique et applications, I (La Rabida, 1984), 23-34, Travaux en Cours, 22, Hermann, Paris, 1987. 
  10. Y. Fan and A. Geroldinger, Minimal relations and catenary degrees in Krull monoids, J. Commut. Algebra 11 (2019), no. 1, 29-47. https://doi.org/10.1216/jca-2019-11-1-29 
  11. A. Foroutan, Monotone chains of factorizations, in Focus on commutative rings research, 107-130, Nova Sci. Publ., New York, 2006.
  12. A. Foroutan and A. Geroldinger, Monotone chains of factorizations in C-monoids, in Arithmetical properties of commutative rings and monoids, 99-113, Lect. Notes Pure Appl. Math., 241, Chapman & Hall/CRC, Boca Raton, FL, 2005. 
  13. A. Geroldinger, The catenary degree and tameness of factorizations in weakly Krull domains, in Factorization in integral domains (Iowa City, IA, 1996), 113-153, Lecture Notes in Pure and Appl. Math., 189, Dekker, New York, 1997. 
  14. A. Geroldinger, D. J. Grynkiewicz, and W. A. Schmid, The catenary degree of Krull monoids I, J. Theor. Nombres Bordeaux 23 (2011), no. 1, 137-169.  https://doi.org/10.5802/jtnb.754
  15. A. Geroldinger and F. Halter-Koch, Non-unique factorizations, Pure and Applied Mathematics (Boca Raton), 278, Chapman & Hall/CRC, Boca Raton, FL, 2006. https://doi.org/10.1201/9781420003208 
  16. A. Geroldinger and P. Yuan, The monotone catenary degree of Krull monoids, Results Math. 63 (2013), no. 3-4, 999-1031. https://doi.org/10.1007/s00025-012-0250-1 
  17. A. Nu˜nez, Algebro-geometric properties of saturated rings, J. Pure Appl. Algebra 59 (1989), no. 2, 201-214. https://doi.org/10.1016/0022-4049(89)90135-7 
  18. M. Omidali, The catenary and tame degree of numerical monoids generated by generalized arithmetic sequences, Forum Math. 24 (2012), no. 3, 627-640. https://doi.org/10.1515/form.2011.078 
  19. C. O'Neill and R. Pelayo, Realisable sets of catenary degrees of numerical monoids, Bull. Aust. Math. Soc. 97 (2018), no. 2, 240-245. https://doi.org/10.1017/S0004972717000995 
  20. A. Philipp, A characterization of arithmetical invariants by the monoid of relations, Semigroup Forum 81 (2010), no. 3, 424-434. https://doi.org/10.1007/s00233-010-9218-1 
  21. J. L. Ramirez Alfonsin, The Diophantine Frobenius problem, Oxford Lecture Series in Mathematics and its Applications, 30, Oxford University Press, Oxford, 2005. https://doi.org/10.1093/acprof:oso/9780198568209.001.0001 
  22. L. Redei, The Theory of Finitely Generated Commutative Semigroups, translation edited by N. Reilly, Pergamon Press, Oxford, 1965. 
  23. J. C. Rosales, An algorithmic method to compute a minimal relation for any numerical semigroup, Internat. J. Algebra Comput. 6 (1996), no. 4, 441-455. https://doi.org/10.1142/S021819679600026X 
  24. J. C. Rosales, M. B. Branco, and D. Torrao, On the enumeration of the set of saturated numerical semigroups with fixed Frobenius number, Appl. Math. Comput. 236 (2014), 471-479. https://doi.org/10.1016/j.amc.2014.03.058 
  25. J. C. Rosales and P. A. Garcia-Sanchez, Finitely Generated Commutative Monoids, Nova Science Publishers, Inc., Commack, NY, 1999. 
  26. J. C. Rosales and P. A. Garcia-Sanchez, Numerical Semigroups, Developments in Mathematics, 20, Springer, New York, 2009. https://doi.org/10.1007/978-1-4419-0160-6 
  27. J. C. Rosales, P. A. Garcia-Sanchez, J. I. Garcia-Garcia, and M. B. Branco, Saturated numerical semigroups, Houston J. Math. 30 (2004), no. 2, 321-330. 
  28. J. C. Rosales and P. Vasco, The Frobenius variety of the saturated numerical semigroups, Houston J. Math. 36 (2010), no. 2, 357-365. 
  29. O. Zariski, General theory of saturation and of saturated local rings. I. Saturation of complete local domains of dimension one having arbitrary coefficient fields (of characteristic zero), Amer. J. Math. 93 (1971), 573-648. https://doi.org/10.2307/2373462 
  30. O. Zariski, General theory of saturation and of saturated local rings. II. Saturated local rings of dimension 1, Amer. J. Math. 93 (1971), 872-964. https://doi.org/10.2307/2373741 
  31. O. Zariski, General theory of saturation and of saturated local rings. III. Saturation in arbitrary dimension and, in particular, saturation of algebroid hypersurfaces, Amer. J. Math. 97 (1975), 415-502. https://doi.org/10.2307/2373720