• Title/Summary/Keyword: factorization

Search Result 587, Processing Time 0.026 seconds

FACTORIZATION IN MODULES AND SPLITTING MULTIPLICATIVELY CLOSED SUBSETS

  • Nikseresht, Ashkan
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.83-99
    • /
    • 2018
  • We introduce the concept of multiplicatively closed subsets of a commutative ring R which split an R-module M and study factorization properties of elements of M with respect to such a set. Also we demonstrate how one can utilize this concept to investigate factorization properties of R and deduce some Nagata type theorems relating factorization properties of R to those of its localizations, when R is an integral domain.

A FAST FACTORIZATION ALGORITHM FOR A CONFLUENT CAUCHY MATRIX

  • KIM KYUNGSUP
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.1-16
    • /
    • 2005
  • This paper presents a fast factorization algorithm for confluent Cauchy-like matrices. The algorithm consists of two parts. First. a confluent Cauchy-like matrix is transformed into a Cauchy-like matrix available to pivot without changing its structure. Second. a fast partial pivoting factorization algorithm for the Cauchy-like matrix is presented. A new displacement structure cannot possibly generate all entries of a transformed matrix, which is called by 'partially reconstructible'. This paper also discusses how the proposed factorization algorithm can be generally applied to partially reconstructive matrices.

유일인수분해에 대하여

  • 최상기
    • Journal for History of Mathematics
    • /
    • v.16 no.3
    • /
    • pp.89-94
    • /
    • 2003
  • Though the concept of unique factorization was formulated in tile 19th century, Euclid already had considered the prime factorization of natural numbers, so called tile fundamental theorem of arithmetic. The unique factorization of algebraic integers was a crucial problem in solving elliptic equations and the Fermat Last Problem in tile 19th century On the other hand the unique factorization of the formal power series ring were a critical problem in the past century. Unique factorization is one of the idealistic condition in computation and prime elements and prime ideals are vital ingredients in thinking and solving problems.

  • PDF

A VARIANT OF BLOCK INCOMPLETE FACTORIZATION PRECONDITIONERS FOR A SYMMETRIC H-MATRIX

  • Yun, Jae-Heon;Kim, Sang-Wook
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.705-720
    • /
    • 2001
  • We propose a variant of parallel block incomplete factorization preconditioners for a symmetric block-tridiagonal H-matrix. Theoretical properties of these block preconditioners are compared with those of block incomplete factoriztion preconditioners for the corresponding somparison matrix. Numerical results of the preconditioned CG(PCG) method using these block preconditioners are compared with those of PCG using other types of block incomplete factorization preconditioners. Lastly, parallel computations of the block incomplete factorization preconditioners are carried out on the Cray C90.

A NOTE ON ASCEND AND DESCEND OF FACTORIZATION PROPERTIES

  • Shah Tariq
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.419-424
    • /
    • 2006
  • In this paper we extend the study of ascend and descend of factorization properties (for atomic domains, domains satisfying ACCP, bounded factorization domains, half-factorial domains, pre-Schreier and semirigid domains) to the finite factorization domains and idf-domains for domain extension $A\;{\subseteq}\;B$.

Factorization Models and Other Representation of Independence

  • Lee, Yong-Goo
    • Journal of the Korean Statistical Society
    • /
    • v.19 no.1
    • /
    • pp.45-53
    • /
    • 1990
  • Factorization models are a generalization of hierarchical loglinear models which apply equally to discrete and continuous distributions. In regular (strictly positive) cases the intersection of two factorization models is another factorization model whose representation is obtained by a simple algorithm. Failure of this result in an irregular case is related to a theorem of Basu on ancillary statistics.

  • PDF

Feature Parameter Extraction and Speech Recognition Using Matrix Factorization (Matrix Factorization을 이용한 음성 특징 파라미터 추출 및 인식)

  • Lee Kwang-Seok;Hur Kang-In
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1307-1311
    • /
    • 2006
  • In this paper, we propose new speech feature parameter using the Matrix Factorization for appearance part-based features of speech spectrum. The proposed parameter represents effective dimensional reduced data from multi-dimensional feature data through matrix factorization procedure under all of the matrix elements are the non-negative constraint. Reduced feature data presents p art-based features of input data. We verify about usefulness of NMF(Non-Negative Matrix Factorization) algorithm for speech feature extraction applying feature parameter that is got using NMF in Mel-scaled filter bank output. According to recognition experiment results, we confirm that proposed feature parameter is superior to MFCC(Mel-Frequency Cepstral Coefficient) in recognition performance that is used generally.

Cholesky Factorization of the Augmented System in Interior Point Methods for Linear Programming (내부점 방법에서 Augmented System의 촐레스키 분해)

  • 도승용;성명기;박순달
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.1
    • /
    • pp.51-61
    • /
    • 2003
  • In the normal equations approach in which the ordering and factorization phases are separated, the factorization in the augmented system approach is computed dynamically. This means that in the augmented system the numerical factorization should be performed to obtain the non-zero structure of Cholesky factor L. This causes much time to set up the non-zero structure of Cholesky factor L. So, we present a method which can separate the ordering and numerical factorization in the augmented system. Experimental results show that the proposed method reduces the time for obtaining the non-zero structure of Cholesky factor L.

Study on Robustness of Incomplete Cholesky Factorization using Preconditioning for Conjugate Gradient Method (불완전분해법을 전처리로 하는 공액구배법의 안정화에 대한 연구)

  • Ko, Jin-Hwan;Lee, Byung-Chai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.276-284
    • /
    • 2003
  • The preconditioned conjugate gradient method is an efficient iterative solution scheme for large size finite element problems. As preconditioning method, we choose an incomplete Cholesky factorization which has efficiency and easiness in implementation in this paper. The incomplete Cholesky factorization mettled sometimes leads to breakdown of the computational procedure that means pivots in the matrix become minus during factorization. So, it is inevitable that a reduction process fur stabilizing and this process will guarantee robustness of the algorithm at the cost of a little computation. Recently incomplete factorization that enhances robustness through increasing diagonal dominancy instead of reduction process has been developed. This method has better efficiency for the problem that has rotational degree of freedom but is sensitive to parameters and the breakdown can be occurred occasionally. Therefore, this paper presents new method that guarantees robustness for this method. Numerical experiment shows that the present method guarantees robustness without further efficiency loss.

Nonnegative Tucker Decomposition (텐서의 비음수 Tucker 분해)

  • Kim, Yong-Deok;Choi, Seung-Jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.296-300
    • /
    • 2008
  • Nonnegative tensor factorization(NTF) is a recent multiway(multilineal) extension of nonnegative matrix factorization(NMF), where nonnegativity constraints are imposed on the CANDECOMP/PARAFAC model. In this paper we consider the Tucker model with nonnegativity constraints and develop a new tensor factorization method, referred to as nonnegative Tucker decomposition (NTD). We derive multiplicative updating algorithms for various discrepancy measures: least square error function, I-divergence, and $\alpha$-divergence.