• 제목/요약/키워드: factor-nuclear ${\kappa}B$

검색결과 1,009건 처리시간 0.023초

Phenethyl Isothiocyanate가 Toll-like Receptor Agonists에 의해 유도된 Nuclear Factor-κB 활성과 Cyclooxygenase-2, Inducible Nitric Oxide Synthase 발현에 미치는 효과 (The Effects of Phenethyl Isothiocyanate on Nuclear Factor-κB Activation and Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Expression Induced by Toll-like Receptor Agonists)

  • 김수정;박혜정;신화정;김지수;안희진;민인순;윤형선
    • Journal of Applied Biological Chemistry
    • /
    • 제54권4호
    • /
    • pp.279-283
    • /
    • 2011
  • 염증의 중요한 분자학적 기전에는 cyclooxygenase-2 (COX-2)에 의한 prostaglandins (PGs) 생성과 inducible nitric oxide synthase (iNOS)에 의한 nitric oxide (NO) 생성이 있다. 많은 종류의 박테리아나 바이러스가 전사요소인 nuclear factor-${\kappa}$B(NF-${\kappa}$B)를 활성화시켜 여러 타깃 유전자의 발현을 조절해 PGs나 NO와 같은 염증물질을 유도하게 된다. 우리는 이번 실험을 통하여 phenethyl isothiocyanate (PEITC)가 toll-like receptor(TLR) agonists에 의해 유도된 NF-${\kappa}$B활성과 COX-2, iNOS 발현에 어떠한 영향을 미치는지 알아 보았다. PEITC는 lipopolysaccharide (LPS)와 polyinosinic-polycytidylic acid (poly[I:C])에 의해 유도된 NF-${\kappa}$B활성을 억제시켰다. 또한 PEITC는 LPS와 Poly[I:C]에 의해 유도된 iNOS의 발현도 억제시켰다. 하지만 PEITC는 TLR agonists들인 LPS, Poly[I:C], 2 kDa macrophage-activating lipopeptide (MALP-2), oligodeoxynucleotide 1668 (ODN1668)에 의한 COX-2 발현은 억제시키지 못하였다. 즉 PEITC가 TRIF-dependent 신호전달체계만을 조절하여 TRIF-dependent 신호전달체계에 의해 조절되는 iNOS는 억제하지만 MyD88-dependent 신호전달 체계에 의해 조절되는 COX-2는 억제하지 못한다는 것을 설명해준다. 이러한 결과는 iNOS와 COX-2가 서로 다른 메커니즘에 의해 조절된다는 것을 암시하며, PEITC가 여러 병원균들로부터 유도되는 염증반응이나 만성적인 질병들을 조절할 수 있음을 제시하는 중요한 결과이다.

Sodium Salicylate Inhibits Expression of COX-2 Through Suppression of ERK and Subsequent $NF-{\kappa}B$ Activation in Rat Ventricular Cardiomyocytes

  • Kwon, Keun-Sang;Chae, Han-Jung
    • Archives of Pharmacal Research
    • /
    • 제26권7호
    • /
    • pp.545-553
    • /
    • 2003
  • The expression of cyclooxygenase-2 (COX-2) is a characteristic response to inflammation, which can be inhibited with sodium salicylate. IL-1$\beta$ and TNF-$\alpha$ can induce extracellular signal-regulated kinase (ERK), IKK, IkB degradation and NF-$\kappa$B activation. Salicylate inhibited the IL-1$\beta$ and TNF-$\alpha$-induced COX-2 expressions, regulated the activation of ERK, IKK and IkB degradation, and the subsequent activation of NF-$\kappa$B, in neonatal rat ventricular cardiomyocytes. The inhibition of the ERK pathway, with a selective inhibitor, PD098059, blocked the expressions of IL-1$\beta$ and TNF-$\alpha$-induced COX-2 and $PGE_2$ release. The antioxidant, N-acetyl-cysteine, also reduced the glutathione or catalase- attenuated COX-2 expressions in IL-1$\beta$ and TNF-$\alpha$-treated cells. This antioxidant also inhibited the activation of ERK and NF-$\kappa$B in neonatal rat cardiomyocytes. In addition, IL-1$\beta$ and TNF-$\alpha$-stimulated the release of reactive oxygen species (ROS) in the cardiomyocytes. However, salicylate had no inhibitory effect on the release of ROS in the DCFDA assay. The results showed that salicylate inhibited the activation of ERK and IKK, I$\kappa$B degradation and NF-$\kappa$B activation, independently of the release of ROS, which suggested that salicylate exerts its anti-inflammatory action through the inhibition of ERK, IKK, IkB and NF-$\kappa$B, and the resultant COX-2 expression pathway in neonatal rat ventricular cardiomyocytes.

Inhibition of Dermatitis Development by Sopungsan in Nc/Nga Mice

  • Pokhare, Yuba Raj;Lim, Sung-Chul;Kim, Sang-Chan;Choi, Hoo-Kyun;Kang, Keon-Wook
    • Toxicological Research
    • /
    • 제24권1호
    • /
    • pp.17-22
    • /
    • 2008
  • Sopungsan (SS) is a traditional Korean decoction used for the treatment of dermatitis. The aim of this study is to confirm whether or not SS has a preventive effect on the development of atopic dermatitis in dinitrochlorobenzene-applied Nc/Nga mice. SS was administered orally to Nc/Nga mice, which led to the remarkable suppression of the development of dermatitis, as determined by a histological examination and the serum IgE levels. Moreover, SS inhibited the production of thymus- and activation-regulated chemokine (TARC) and its mRNA expression in a keratinocyte cell line, HaCaT, which had been stimulated with tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interferon-${\gamma}$ (IFN-${\gamma}$). Activation of the nuclear factor-${\kappa}B$ (NF-${\kappa}B$) or activator protein-1 (AP-1) is one of key steps in the signaling pathways mediating induction of TARC. In this study, SS selectively suppressed NF-${\kappa}B$ activation which may be essential for TARC expression in $TNF-{\alpha}/IFN-{\gamma}$ treated keratinocytes. The inhibitory effect of SS on NF-${\kappa}B$ activation and TARC production might be associated with the anti-dermatitic effects of SS.

Mangiferin isolated from the rhizome of Anemarrhena asphodeloides inhibits the LPS-induced nitric oxide and prostagladin $E_2$ via the $NF-{\kappa}B$ inactivation in inflammatory macrophages

  • Shin, Ji-Sun;Noh, Young-Su;Kim, Dong-Hyun;Cho, Young-Wuk;Lee, Kyung-Tae
    • Natural Product Sciences
    • /
    • 제14권3호
    • /
    • pp.206-213
    • /
    • 2008
  • This study was designed to investigate the anti-inflammatory effects of mangiferin isolated from the rhizome of Anemarrhena asphodeloides, a natural polyphenol, on lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. Mangiferin dose-dependently inhibited LPS-induced nitric oxide (NO) and prostaglandin $E_2\;(PGE_2)$ productions in RAW 264.7 macrophages and peritoneal macrophages isolated from C57BL/6 mice. Consistent with these data, mangiferin suppressed the LPS-induced expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels in a concentration-dependent manner, as determined by Western blotting and RT-PCR, respectively. In addition, the release of tumor necrosis $factor-{\alpha}$($TNF-{\alpha}$) and interleukin-6 (IL-6), and the mRNA expression levels of these cytokines were reduced by mangiferin in a dose-dependent manner. Moreover, mangiferin effectively inhibited the transcriptional activation of nuclear factor-kappa B $(NF-{\kappa}B)$. These results suggest that the anti-inflammatory properties of mangiferin are caused by iNOS, COX-2, $TNF-{\alpha}$, and IL-6 down-regulation due to $(NF-{\kappa}B)$ inhibition in RAW 264.7 macrophages.

Fucosyltransferase IV Enhances Expression of MMP-12 Stimulated by EGF via the ERK1/2, p38 and NF-kB Pathways in A431Cells

  • Yang, Xue-Song;Liu, Shui-Ai;Liu, Ji-Wei;Yan, Qiu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권4호
    • /
    • pp.1657-1662
    • /
    • 2012
  • Fucosyltransferase IV (FUT4) has been implicated in cell adhesion, motility, and tumor progression in human epidermoid carcinoma A431 cells. We previously reported that it promotes cell proliferation through the ERK/MAPK and PI3K/Akt signaling pathways; however, the molecular mechanisms underlying FUT4-induced cell invasion remain unknown. In this study we determined the effect of FUT4 on expression of matrix metalloproteinase (MMP)-12 induced by EGF in A431 cells. Treatment with EGF resulted in an alteration of cell morphology and induced an increase in the expression of MMP-12. EGF induced nuclear translocation of nuclear factor kB (NF-${\kappa}B$) and resulted in phosphorylation of $IkB{\alpha}$ in a time-dependent manner. In addition, ERK1/2 and p38 MAPK were shown to play a crucial role in mediating EGF-induced NF-${\kappa}B$ translocation and phosphorylation of $I{\kappa}B{\alpha}$ when treated with the MAPK inhibitors, PD98059 and SB203580, which resulted in increased MMP-12 expression. Importantly, we showed that FUT4 up-regulated EGF-induced MMP-12 expression by promoting the phosphorylation of ERK1/2 and p38 MAPK, thereby inducing phosphorylation/degradation of $I{\kappa}B{\alpha}$, NF-${\kappa}B$ activation. Base on our data, we propose that FUT4 up-regulates expression of MMP-12 via a MAPK-NF-${\kappa}B$-dependent mechanism.

Estrogen reinforces barrier formation and protects against tumor necrosis factor alpha-induced barrier dysfunction in oral epithelial cells

  • Choi, Yun Sik;Baek, Keumjin;Choi, Youngnim
    • Journal of Periodontal and Implant Science
    • /
    • 제48권5호
    • /
    • pp.284-294
    • /
    • 2018
  • Purpose: Epithelial barrier dysfunction is involved in the pathophysiology of periodontitis and oral lichen planus. Estrogens have been shown to enhance the physical barrier function of intestinal and esophageal epithelia, and we aimed to investigate the effect of estradiol (E2) on the regulation of physical barrier and tight junction (TJ) proteins in human oral epithelial cell monolayers. Methods: HOK-16B cell monolayers cultured on transwells were treated with E2, an estrogen receptor (ER) antagonist (ICI 182,780), tumor necrosis factor alpha ($TNF{\alpha}$), or dexamethasone (Dexa), and the transepithelial electrical resistance (TER) was then measured. Cell proliferation was measured by the cell counting kit (CCK)-8 assay. The levels of TJ proteins and nuclear translocation of nuclear factor $(NF)-{\kappa}B$ were examined by confocal microscopy. Results: E2 treatment increased the TER and the levels of junctional adhesion molecule (JAM)-A and zonula occludens (ZO)-1 in a dose-dependent manner, without affecting cell proliferation during barrier formation. Treatment of the tight-junctioned cell monolayers with $TNF{\alpha}$ induced decreases in the TER and the levels of ZO-1 and nuclear translocation of $NF-{\kappa}B$. These $TNF{\alpha}-induced$ changes were inhibited by E2, and this effect was completely reversed by co-treatment with ICI 182,780. Furthermore, E2 and Dexa presented an additive effect on the epithelial barrier function. Conclusions: E2 reinforces the physical barrier of oral epithelial cells through the nuclear ER-dependent upregulation of TJ proteins. The protective effect of E2 on the $TNF{\alpha}-induced$ impairment of the epithelial barrier and its additive effect with Dexa suggest its potential use to treat oral inflammatory diseases involving epithelial barrier dysfunction.

Negative regulators in RANKL-induced osteoclastogenesis

  • Lee, Jun-Won;Kim, Kab-Sun;Kim, Nack-Sung
    • International Journal of Oral Biology
    • /
    • 제32권1호
    • /
    • pp.1-5
    • /
    • 2007
  • Receptor activator of nuclear factor ${\kappa}B$ ligand (RANKL) induces osteoclast formation from hematopoietic cells via up-regulation of positive regulators, including $NF-{\kappa}B$, c-Fos, microphthalmia transcription factor (Mitf), PU.1, and nuclear factor of activated T cells (NFAT) c1. In addition to the positive regulation by these transcription factors, RANKL appears to regulate negative regulators such as MafB and inhibitors of differentiation (Ids). Ids and MafB are abundantly expressed in osteoclast precursors, bone marrowderived monocyte/macrophage lineage cells (BMMs). Expression levels of these genes are significantly reduced by RANKL during osteoclastogenesis. Overexpression of these genes in BMMs inhibits the formation of tartarate-resistant acid phosphatase (TRAP)-positive multinuclear osteoclasts by down-regulation of NFATc1 and osteoclast-associated receptor (OSCAR), which are important for osteoclast differentiation. Furthermore, reduced expression of these genes enhances osteoclastogenesis and increases expression of NFATc1 and OSCAR. Taken together, RANKL induces osteoclastogenesis via up-regulation of positive regulators as well as down-regulation of negative regulators.

The Anti-inflammatory Mechanism of Pu-erh Tea via Suppression the Activation of NF-κB/HIF-1α in LPS-stimulated RAW264.7 Cells

  • Su-Jin Kim
    • 대한의생명과학회지
    • /
    • 제29권2호
    • /
    • pp.58-65
    • /
    • 2023
  • Pu-erh tea, a popular and traditional Chinese tea, possesses various health-promoting effects, including inhibiting tumor cell progression and preventing type II diabetes and neurodegenerative disorders. However, the precise anti-inflammatory mechanisms are not well understood. In present study, we elucidated the anti-inflammatory mechanism of Pu-erh tea in lipopolysaccharide (LPS)-activated RAW264.7 cells. We explored the effects of Pu-erh tea on the levels of inflammatory-related genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and prostaglandin E2 (PGE2) in LPS-activated RAW264.7 cells. Moreover, we investigated its regulatory effects on nuclear factor-kappa B (NF)-κB and hypoxia-inducible-factor (HIF)-1α activation. The findings of this study demonstrated that Pu-erh tea inhibited the LPS-increased inflammatory cytokines and PGE2 release, as well as COX-2 and iNOS expression. Moreover, we confirmed that the anti-inflammatory mechanism of Pu-erh tea occurs via the inhibition of NF-κB and HIF-1α activation. Conclusively, these findings provide experimental evidence that Pu-erh tea may be useful candidate in the treatment of inflammatory-related diseases.

Protective effects of curcumin against methotrexate-induced testicular damage in rats by suppression of the p38-MAPK and nuclear factor-kappa B pathways

  • Kilinc, Leyla;Uz, Yesim Hulya
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제48권3호
    • /
    • pp.211-220
    • /
    • 2021
  • Objective: The present study aimed to investigate the possibility that curcumin (CMN) protects against methotrexate (MTX)-induced testicular damage by affecting the phospho-p38 (p-p38) mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways. Methods: Eighteen male Wistar albino rats were randomly divided into three groups. The control group was given an intragastric administration of dimethyl sulfoxide (DMSO) daily for 14 days, the MTX group was given a single intraperitoneal dose of MTX (20 mg/kg) on the 11th day, and the MTX+CMN group was given intragastric CMN (100 mg/kg/day, dissolved in DMSO) for 14 days and a single intraperitoneal dose of MTX (20 mg/kg) on the 11th day. At the end of the experiment, all animals were sacrificed and the testicular tissues were removed for morphometry, histology, and immunohistochemistry. Body and testicular weights were measured. Results: Body weights, seminiferous tubule diameter, and germinal epithelium height significantly decreased in the MTX group compared to the control group. Whereas, the number of histologically damaged seminiferous tubules and interstitial space width significantly increased in the MTX group. In addition, the number of p-p38 MAPK immunopositive cells and the immunoreactivity of NF-κB also increased in the MTX group compared to the control group. CMN improved loss of body weight, morphometric values, and histological damage due to MTX. CMN also reduced the number of p-p38 MAPK immunopositive cells and the NF-κB immunoreactivity. Conclusion: CMN may reduce MTX-induced testicular damage by suppressing the p38 MAPK and NF-κB signaling pathways.

Protective effects of lutein against vancomycin-induced acute renal injury in mice via upregulation of peroxisome proliferator-activated receptor gamma/nuclear factor erythroid 2-related factor 2 and inhibition nuclear factor-kappaB/caspase 3

  • Emeka, Promise M.;Rasool, Sahibzada T.;Morsy, Mohamed A.;Islam, Mohamed I. Hairul;Chohan, Muhammad S.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권4호
    • /
    • pp.321-331
    • /
    • 2021
  • Vancomycin, an antibiotic used occasionally as a last line of treatment for methicillin-resistant Staphylococcus aureus, is reportedly associated with nephrotoxicity. This study aimed at evaluating the protective effects of lutein against vancomycin-induced acute renal injury. Peroxisome proliferator-activated receptor gamma (PPARγ) and its associated role in renoprotection by lutein was also examined. Male BALB/c mice were divided into six treatment groups: control with normal saline, lutein (200 mg/kg), vancomycin (250 mg/kg), vancomycin (500 mg/kg), vancomycin (250 mg/kg) with lutein, and vancomycin (500 mg/kg) with lutein groups; they were euthanized after 7 days of treatment. Thereafter, samples of blood, urine, and kidney tissue of the mice were analyzed, followed by the determination of levels of N-acetyl-β-D-glucosaminidase (NAG) in the urine, renal creatine kinase; protein carbonyl, malondialdehyde, and caspase-3 in the kidney; and the expression of PPARγ, nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor-kappaB (NF-κB) in renal tissue. Results showed that the levels of protein carbonyl and malondialdehyde, and the activity of NAG, creatine kinase and caspase-3, were significantly increased in the vancomycin-treatment groups. Moreover, the levels of Nrf2 significantly decreased, while NF-κB expression increased. Lutein ameliorated these effects, and significantly increased PPARγ expression. Furthermore, it attenuated vancomycin-induced histological alterations such as, tissue necrosis and hypertrophy. Therefore, we conclude that lutein protects against vancomycin-induced renal injury by potentially upregulating PPARγ/Nrf2 expression in the renal tissues, and consequently downregulating the pathways: inflammation by NF-κB and apoptosis by caspase-3.