• 제목/요약/키워드: factor-nuclear ${\kappa}B$

검색결과 1,013건 처리시간 0.029초

Inhibitory Effect of Sargauum fulvellum Ethanolic Extract on LPS-Induced Inflammatory Reaction in RAW 264.7 Mouse Macrophages

  • Kim, Min-Ji;Kim, Koth-Bong-Woo-Ri;Jeong, Da-Hyun;Ahn, Dong-Hyun
    • Journal of Applied Biological Chemistry
    • /
    • 제56권4호
    • /
    • pp.249-255
    • /
    • 2013
  • Recently, algae has been considered as a potential anti-inflammatory source due to its distinctive habitat environment exposing to light and high oxygen concentration. In present study, anti-inflammatory effect of brown alga, Sargassum fullvellum ethanol extract (SFEE), was examined. SFEE inhibited not only the production of nitric oxide and pro-inflammatory cytokines (IL-6, IL-$1{\beta}$, TNF-${\alpha}$) but also the expression of inducible nitric oxide synthase and cyclooxygenase 2 in LPS-induced RAW 264.7 cells without affecting cell viability. SFEE also suppressed the expression of nuclear factor kappa B (NF-${\kappa}B$), suggesting that SFEE could affect the expression of inflammation related cytokines and proteins through the regulation of NF-${\kappa}B$. Furthermore, formation of edema of the ear was 40% lower in mice treated with the highest dose (250 mg/kg) of SFEE than in the control mice. Thus, our study showed that SFEE may be a potential therapeutic anti-inflammatory drug.

Fisetin Suppresses Macrophage-Mediated Inflammatory Responses by Blockade of Src and Syk

  • Kim, Jun Ho;Kim, Mi-Yeon;Kim, Jong-Hoon;Cho, Jae Youl
    • Biomolecules & Therapeutics
    • /
    • 제23권5호
    • /
    • pp.414-420
    • /
    • 2015
  • Flavonoids, such as fisetin (3,7,3',4'-tetrahydroxyflavone), are plant secondary metabolites. It has been reported that fisetin is able to perform numerous pharmacological roles including anti-inflammatory, anti-microbial, and anti-cancer activities; however, the exact anti-inflammatory mechanism of fisetin is not understood. In this study, the pharmacological action modes of fisetin in lipopolysaccharide (LPS)-stimulated macrophage-like cells were elucidated by using immunoblotting analysis, kinase assays, and an overexpression strategy. Fisetin diminished the release of nitric oxide (NO) and reduced the mRNA levels of inducible NO synthase (iNOS), tumor necrosis factor (TNF)-${\alpha}$, and cyclooxygenase (COX)-2 in LPS-stimulated RAW264.7 cells without displaying cytotoxicity. This compound also blocked the nuclear translocation of p65/nuclear factor (NF)-${\kappa}B$. In agreement, the upstream phosphorylation events for NF-${\kappa}B$ activation, composed of Src, Syk, and I${\kappa}B{\alpha}$, were also reduced by fisetin. The phospho-Src level, triggered by overexpression of wild-type Src, was also inhibited by fisetin. Therefore, these results strongly suggest that fisetin can be considered a bioactive immunomodulatory compound with anti-inflammatory properties through suppression of Src and Syk activities.

Wogonin inhibits Cytokine-induced TARC/CCL17 Expression by Suppression of NF-${\kappa}B$ activation via p38 MAP kinase Signalning Pathways in HaCaT Keratinocytes

  • Jang, Seon-Il
    • 동의생리병리학회지
    • /
    • 제21권4호
    • /
    • pp.1017-1024
    • /
    • 2007
  • Thymus and activation-regulated chemokine (TARC/CCL-17), produced by keratinocytes, is a CC chemokine known to selectively Th2 type T cells via $CCR4^+$ and is implicated in the development of atopic dermatitis (AD). TARC/CCL17 expression was induced by cytokines such as tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interferon-${\gamma}$ (IFN-${\gamma}$). We recently found that the wogonin, a flavone isolated from Scutellaria baicalensis, suppressed TARC expression via heme oxygenase 1 (HO1) in human keratinocytes induced with mite antigen. However, little is known about the inhibitory mechanism of wogonin on TARC/CCL-17 expression stimulated with cytokines. To investigate the inhibitory mechanism, I determined the inhibitory effects of wogonin on the activation of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and $I{\kappa}B{\alpha}$ phosphorylation, and also examined the activation of p38 MAP kainase in HaCaT keratinocytes stimulated with TNF-${\alpha}$ and IFN-${\gamma}$. Wogonin inhibited NF-${\kappa}B$-DNA complex, NF-${\kappa}B$ binding activity, and the phosphorylation of $I{\kappa}B{\alpha}$ in a dose dependent manner. Wogonin also inhibited the translocation of NF-${\kappa}B$ from cytosol to nucleus. Moreover, the phosphorylation of of p38 MAP kinase in the TNF-${\alpha}$ and IFN-${\gamma}$-stimulated HaCaT keratinocytes were suppressed by wogonin in a dose dependent manner. These results suggest that wogonin may inhibit cytokine-induced NF-${\kappa}B$ activation by $I{\kappa}B{\alpha}$ degradation via suppression of p38 MAP kinase signaling pathway in keratinocytes and modulation of wogonin signaling pathway may be beneficial for the treatment of AD.

Lonicera Japonioa Inhibits the Production of NO through the Suppression of NF-kB Activity in LPS-stimulated Mouse Peritoneal Macrophages

  • 김영희;김한도
    • 한방안이비인후피부과학회지
    • /
    • 제17권1호
    • /
    • pp.163-171
    • /
    • 2004
  • The flowers of Lonicera japonica Thunb. (Caprifoliaceae) has been used as anti-inflammatory drug in the folk medicine recipe and been proved its anti-inflammatory effect in the oriental medicine. However, the action mechanism of Lonicera japonica that exhibits anti-inflammatory effects has not been determined. Since nitric oxide (NO) is one of the major inflammatory parameter, we studied the effect of aqueous extracts of Lonicera japonica (AELJ) on NO production in lipopolysaccharide (LPS)-stimulated mouse peritoneal macrophages. NO and inducible NO synthase (iNOS) level were significantly reduced in LPS-stimulated macrophages by AELJ compared to those without Electrophoretic mobility shift assay (EMSA) indicated that AELJ blocked the activation of nuclear factor kappa B (NF-kB), which was considered to be a potential transcription factor for the iNOS expression. AELJ also blocked the phosphorylation and degradation of inhibitor of kappa B-alpha (IkB-${\alpha}$). Furthermore, IkB kinase alpha (IKK${\alpha}$), which is known to phosphorylate serine residues of IkB directly, is inhibited by AELJ in vivo and in vitro. These results suggest that AELJ could exert its anti-inflammatory actions by suppressing the synthesis of NO through inhibition of NF-kB activity.

  • PDF

Humanin suppresses receptor activator of nuclear factor-κB ligand-induced osteoclast differentiation via AMP-activated protein kinase activation

  • Kang, Namju;Kim, Ki Woo;Shin, Dong Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권5호
    • /
    • pp.411-417
    • /
    • 2019
  • Humanin (HN) is a mitochondrial peptide that exhibits cytoprotective actions against various stresses and diseases. HN has been shown to induce the phosphorylation of AMP-activated protein kinase (AMPK), which is a negative regulator of receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL). However, the role of HN in osteoclastogenesis or other skeletal disorders remains unknown. Here, we examined whether HN regulates osteoclastogenesis via AMPK activation using bone marrow-derived macrophage (BMM) cultures. Our results show that HN inhibited RANKL-induced osteoclast formation and reduced the expression of genes involved in osteoclastogenesis, including nuclear factor of activated T-cells cytoplasmic 1, osteoclastassociated receptor, cathepsin K, and tartrate-resistant acid phosphatase. Moreover, HN increased the levels of phosphorylated AMPK protein; compound C, an AMPK inhibitor, recovered HN-induced osteoclast differentiation. In addition, we found that HN significantly decreased the levels of RANKL-induced reactive oxygen species in BMMs. Therefore, these results indicate that HN plays an important role in osteoclastogenesis and may function as an inhibitor of bone disorders via AMPK activation.

회장 상피세포에서 비브리오균(Vibrio vulnificus)의 염증 유도 기작 연구: protein kinase C와 nuclear factor kappa-B의 관련성 (Vibrio Vulnificus Induces the Inflammation of Mouse Ileal Epithelium: Involvement of Protein Kinase C and Nuclear Factor-Kappa B)

  • 한기연;정영현;장경구;최상호;이세중
    • 생명과학회지
    • /
    • 제24권6호
    • /
    • pp.664-670
    • /
    • 2014
  • 비브리오균(Vibrio vulnificus)은 심각하고 치명적인 감염을 일으킬 수 있는 호염성의 식중독균이지만, 숙주세포 내에서 염증반응을 일으키는 분자적 기작은 아직 잘 알려지지 않았다. 본 연구에서는 오염된 식품 섭취를 통해 유입되는 비브리오균의 소장 특이적 염증 반응 위치와 기작을 알아보기 위해, 7주령의 수컷 마우스에 비브리오균($1{\times}10^9CFU$)을 16시간 동안 경구 투여하였다. 그 결과 비브리오균은 주로 회장(ileum) 부위에서 비브리오균(WT) 수가 가장 많이 증가하였고, 공장(Jejunum), 근위부대장(proximal colon), 원위부 대장(distal colon)에도 유의적으로 군집현성이 이루어짐을 알 수 있었지만, 십이지장(duodenum)과 비장(spleen), 그리고 간(liver) 조직들에서는 관찰되지 않았다. 특히 비브리오균의 표적기관인 회장상피조직에서는 비브리오균(WT)이 침입 시 융모 안으로 다량의 염증세포들이 유입되었고, 융포의 폭이 넓어지고 길이가 짧아지는 전형적인 조직학적 염증 반응을 보여주었다. 비브리오균이 유도한 조직 특이적 염증반응기작을 알아보기 위해, 비브리오에 감염된 회장상피조직으로부터 단백질과 mRNA를 분리하였다. 비브리오균은 숙주세포의 중추적 신호전달 단백질인 protein kinase C (PKC)의 인산화 및 $PKC{\alpha}$의 세포막이동을 촉진시켰고, mitogen-activated protein kinase (MAPK) 중 extracellular signal-regulated kinases (ERK)와 c-Jun N-terminal kinases (JNK)의 인산화를 유도하였지만, p38 MAPK 인산화에는 영향을 미치지 않았다. 특히 비브리오균은 inhibitory factor-kappa B (I-${\kappa}B$)의 활성을 촉진시킴으로써 nuclear factor-kappa B (NF-${\kappa}B$)의 인산화를 유도하였다. 마지막으로 비브리오균(WT)에 감염된 회장의 경우, 정상마우스에 비해 염증성 cytokine인 interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-${\alpha}$의 mRNA 수준이 유의적으로 증가되었다. 염증매개 수용체인 toll like receptor (TLR)-4, TLR-5, TLR-9의 mRNA의 발현 또한 비브리오균 처리에 의해 증가되어 있음이 관찰되었다. 종합적으로 오염된 식품 섭취를 통해 유입되는 비브리오균은 회장상피세포를 표적으로 염증반응을 일으키며, 그 기작은 PKC, ERK1/2, 그리고 JNK의 인산화를 통한 NF-${\kappa}B$ 활성의 촉진이며, 이로 인한 다양한 염증 매개 단백질 발현의 증가를 통해 이루어진다고 할 수 있다.

Pulegone Exhibits Anti-inflammatory Activities through the Regulation of NF-κB and Nrf-2 Signaling Pathways in LPS-stimulated RAW 264.7 cells

  • Roy, Anupom;Park, Hee-Juhn;Abdul, Qudeer Ahmed;Jung, Hyun Ah;Choi, Jae Sue
    • Natural Product Sciences
    • /
    • 제24권1호
    • /
    • pp.28-35
    • /
    • 2018
  • Pulegone is a naturally occurring organic compound obtained from essential oils from a variety of plants. The aim of this study was to investigate the anti-inflammatory effects through the inhibitory mechanism of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), nuclear factor kappa B ($NF-{\kappa}B$), mitogen-activated protein kinases (MAPK) pathways and the activation of nuclear factor erythroid 2-related factor 2 (Nrf2)/ heme oxygenase (HO)-1 pathways in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Results revealed that pulegone significantly inhibited NO production as well as iNOS and COX-2 expressions. Meanwhile, western blot analysis showed that pulegone down-regulated LPS-induced $NF-{\kappa}B$ and MAPKs activation in RAW 264.7 cells. Furthermore, the selected compound suppressed LPS-induced intracellular ROS production in RAW 264.7 cells, while the expression of stress response gene, HO-1, and its transcriptional activator, Nrf-2 was upregulated upon pulegone treatment. Taking together, these findings provided that pulegone inhibited the LPS-induced expression of inflammatory mediators via the down-regulation iNOS, COX-2, $NF-{\kappa}B$, and MAPKs signaling pathways as well as up-regulation of Nrf-2/HO-1 indicating that pulegone has a potential therapeutic and preventive application in various inflammatory diseases.

Hexane fraction from the ethanolic extract of Sargassum serratifolium suppresses cell adhesion molecules via regulation of NF-κB and Nrf2 pathway in human umbilical vein endothelial cells

  • Gwon, Wi-Gyeong;Lee, Sang-Gil;Kim, Jae-Il;Kim, Young-Mog;Kim, Seon-Bong;Kim, Hyeung-Rak
    • Fisheries and Aquatic Sciences
    • /
    • 제22권3호
    • /
    • pp.7.1-7.10
    • /
    • 2019
  • Sargassum serratifolium ethanolic extract has been known for strong antioxidant and anti-inflammatory properties. We prepared hexane fraction from the ethanolic extract of S. serratifolium (HSS) to improve biological activities. In this study, we investigated the effects of HSS on the inhibition of tumor necrosis factor (TNF)-${\alpha}$-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). We found that HSS suppressed the production of cell adhesion molecules such as intracellular adhesion molecule-1 and vascular cell adhesion molecule-1 in TNF-${\alpha}$-induced HUVECs. Moreover, TNF-${\alpha}$-induced production of monocyte chemoattractant protein 1 and keratinocyte chemoattractant was inhibited by HSS treatment. HSS suppressed TNF-${\alpha}$-induced nuclear factor kappa B ($NF-{\kappa}B$) activation via preventing proteolytic degradation of inhibitor ${\kappa}B-{\alpha}$. HSS induced the production of heme oxygenase 1 via translocation of Nrf2 into the nucleus in TNF-${\alpha}$-treated HUVECs. Overall, HSS alleviated vascular inflammation through the downregulation of $NF-{\kappa}B$ activation and the upregulation of Nrf2 activation in TNF-${\alpha}$-induced HUVECs. These results indicate that HSS may be used as therapeutic agents for vascular inflammatory disorders.

Anti-Inflammatory Activity of Vacuum Distillate from Panax ginseng Root on LPS-Induced RAW264.7 Cells

  • Chanwoo Lee;Seul Lee;Young Pyo Jang;Junseong Park
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권2호
    • /
    • pp.262-269
    • /
    • 2024
  • Panax ginseng has been widely applied as an important herb in traditional medicine to treat numerous human disorders. However, the inflammatory regulation effect of P. ginseng distillate (GSD) has not yet been fully assessed. To determine whether GSD can ameliorate inflammatory processes, a GSD was prepared using the vacuum distillation process for the first time, and the regulation effect on lipopolysaccharide-induced macrophages was assessed. The results showed that GSD effectively inhibited nitric oxide (NO) formation and activation of inducible nitric oxide synthase (iNOS) mRNA in murine macrophage cell, but not cyclooxygenase-2 production. The mRNA expression pattern of tumor necrosis factor alpha and IL-6 were also reduced by GSD. Furthermore, we confirmed that GSD exerted its anti-inflammatory effects by downregulating c-Jun NH2-terminal kinase (JNK) phosphorylation, the extracellular signal-regulated kinase phosphorylation, and signaling pathway of nuclear factor kappa B (NF-κB). Our findings revealed that the inflammatory regulation activity of GSD could be induced by iNOS and NO formation inhibition mediated by regulation of nuclear factor kappa B and p38/JNK MAPK pathways.

Expression of Nuclear Factor Kappa B (NF-κB) as a Predictor of Poor Pathologic Response to Chemotherapy in Patients with Locally Advanced Breast Cancer

  • Prajoko, Yan Wisnu;Aryandono, Teguh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권2호
    • /
    • pp.595-598
    • /
    • 2014
  • Background: NF-${\kappa}B$ inhibits apoptosis through induction of antiapoptotic proteins and suppression of proapoptotic genes. Various chemotherapy agents induce NF-${\kappa}B$ translocation and target gene activation. We conducted the present study to assess the predictive value of NF-${\kappa}B$ regarding pathologic responses after receiving neoadjuvant chemotherapy. Materials and Methods: We enrolled 131 patients with locally advanced invasive ductal breast carcinoma. Immunohistochemistry (IHC) was used to detect NF-${\kappa}B$ expression. Evaluation of pathologic response was elaborated with the Ribero classification. Results: Expression of NF-${\kappa}B$ was significantly associated with poor pathological response (p=0.02). From the multivariate analysis, it was found that the positive expression of NF-${\kappa}B$ yielded RR=1.74 (95%CI 0.77 to 3.94). Conclusions: NF-${\kappa}B$ can be used as a predictor of poor pathological response after neoadjuvant chemotherapy.