• 제목/요약/키워드: factor-nuclear ${\kappa}B$

검색결과 1,008건 처리시간 0.03초

Anti-inflammatory Activity of Extracts from Ultra-Fine Ground Saururus chinensis Leaves in Lipopolysaccharide-Stimulated Raw 264.7 Cells

  • Kim, Dong-Hee;Cho, Jun-Hyo;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • 제59권1호
    • /
    • pp.37-43
    • /
    • 2016
  • Bioactive components of ultra-fine ground Saururus, the extraction yield increases when the leaves are ultra-fine ground. Comparison of normal-ground and ultra-fine ground Saururus chinensis leaves showed that the solid content and antiinflammatory activity of ultra-fine ground extracts was higher than that of normal-ground extracts. Lipopolysaccharide (LPS)-stimulated Raw 264.7 cells were treated with different concentrations of Saururus chinensis extract and the amount of nitric oxide (NO) was determined; LPS-treated cells produced 2 times more NO than cells that were not treated with LPS. Moreover, the NO production in cells treated with Saururus chinensis extract was inhibited in a concentration-dependent manner. Because the stimulant-induced NO production is regulated by the inducible nitric oxide synthase (iNOS), we measured the iNOS protein level to elucidate the mechanism by which the NO production was inhibited. We found that the amount of iNOS decreased dose-dependently. It was reduced by 53% at a Saururus chinensis extract concentration of $100{\mu}g/mL$. The protein expression of cyclooxygenase-2 (COX-2) in LPS-treated Raw 264.7 cells was inhibited by 31% at $100{\mu}g/mL$ of Saururus chinensis extract. Gel shift of the nuclear factor kappa B-DNA complex occurred in LPS-treated cells and the intensity of the band decreased gradually in a concentration-dependent manner. Ultra-fine ground Saururus chinensis extract had a concentration-dependent inhibitory effect on the production of prostaglandin $E_2$, tumor necrosis factor ${\alpha}$, interleukin $1{\beta}$ (IL-$1{\beta}$), IL-6, and IL-8 in LPS-treated Raw 264.7 cells, i.e., at $50{\mu}g/mL$ of Saururus chinensis extract, their levels were decreased by 53, 67, 52, 37, and 21% respectively.

Characterization of Copper/Zinc-Superoxide Dismutase (Cu/Zn-SOD) Gene from an Endangered Freshwater Fish Species Hemibarbus mylodon (Teleostei; Cypriniformes)

  • Lee, Sang-Yoon;Kim, Keun-Yong;Bang, In-Chul;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • 제14권1호
    • /
    • pp.43-54
    • /
    • 2011
  • Gene structure of copper/zinc-superoxide dismutase (Cu/Zn-SOD; sod1) was characterized in Hemibarbus mylodon (Teleostei; Cypriniformes), an endangered freshwater fish species in Korean peninsula. Full-length cDNA of H. mylodon SOD1 consisted of a 796-bp open reading frame sequence encoding 154 amino acids, and the deduced polypeptide sequence shared high sequence homology with other orthologs, particularly with regard to metal-coordinating ligands. Genomic structure of the H. mylodon sod1 gene (hmsod1; 1,911 bp from the ATG start codon to the stop codon) was typical quinquepartite (i.e., five exons interrupted by four introns); the lengths of the exons were similar among species belonging to various taxonomic positions. The molecular phylogeny inferred from sod1 genes in the teleost lineage was in accordance with the conventional taxonomic assumptions. 5'-flanking upstream region of hmsod1, obtained using the genome walking method, contained typical TATA and CAAT boxes. It also showed various transcription factor binding motifs that may be potentially involved in stress/immune response (e.g., sites for activating proteins or nuclear factor kappa B) or metabolism of xenobiotic compounds (e.g., xenobiotic response element; XRE). The hmsod1 transcripts were ubiquitously detected among tissues, with the liver and spleen showing the highest and lowest expression, respectively. An experimental challenge with Edwardsiella tarda revealed significant upregulation of the hmsod1 in kidney (4.3-fold) and spleen (3.1-fold), based on a real-time RT-PCR assay. Information on the molecular characteristics of this key antioxidant enzyme gene could be a useful basis for a biomarker-based assay to understand cellular stresses in this endangered fish species.

Hyperosmotic Stimulus Down-regulates $1{\alpha}$, 25-dihydroxyvitamin $D_3$-induced Osteoclastogenesis by Suppressing the RANKL Expression in a Co-culture System

  • Tian, Yu-Shun;Jeong, Hyun-Joo;Lee, Sang-Do;Kong, Seok-Heui;Ohk, Seung-Ho;Yoo, Yun-Jung;Seo, Jeong-Taeg;Shin, Dong-Min;Sohn, Byung-Wha;Lee, Syng-Ill
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권3호
    • /
    • pp.169-176
    • /
    • 2010
  • The hyperosmotic stimulus is regarded as a mechanical factor for bone remodeling. However, whether the hyperosmotic stimulus affects $1{\alpha}$, 25-dihydroxyvitamin $D_3$ ($1{\alpha},25(OH)_2D_3$)-induced osteoclastogenesis is not clear. In the present study, the effect of the hyperosmotic stimulus on $1{\alpha},25(OH)_2D_3$-induced osteoclastogenesis was investigated in an osteoblast-preosteoclast co-culture system. Serial doses of sucrose were applied as a mechanical force. These hyperosmotic stimuli significantly evoked a reduced number of $1{\alpha},25(OH)_2D_3$-induced tartrate-resistant acid phosphatase-positive multinucleated cells and $1{\alpha},25(OH)_2D_3$-induced bone-resorbing pit area in a co-culture system. In osteoblastic cells, receptor activator of nuclear factor ${\kappa}B$ ligand (RANKL) and Runx2 expressions were down-regulated in response to $1{\alpha},25(OH)_2D_3$. Knockdown of Runx2 inhibited $1{\alpha},25(OH)_2D_3$-induced RANKL expression in osteoblastic cells. Finally, the hyperosmotic stimulus induced the overexpression of TonEBP in osteoblastic cells. These results suggest that hyperosmolarity leads to the down-regulation of $1{\alpha},25(OH)_2D_3$-induced osteoclastogenesis, suppressing Runx2 and RANKL expression due to the TonEBP overexpression in osteoblastic cells.

Anti-inflammatory and antioxidant effects of umbelliferone in chronic alcohol-fed rats

  • Sim, Mi-Ok;Lee, Hae-In;Ham, Ju Ri;Seo, Kwon-Il;Kim, Myung-Joo;Lee, Mi-Kyung
    • Nutrition Research and Practice
    • /
    • 제9권4호
    • /
    • pp.364-369
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Inflammation is associated with various types of acute and chronic alcohol liver diseases. In this study, we examined whether umbelliferone (7-hydroxycoumarin, UF) ameliorates chronic alcohol-induced liver damage by modulating inflammatory response and the antioxidant system. METHODS: Rats were fed a Liber-Decarli liquid diet containing 5% alcohol with or without UF (0.05 g/L) for 8 weeks, while normal rats received an isocaloric carbohydrate liquid diet. RESULTS: Chronic alcohol intake significantly increased serum tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin 6 levels and decreased interleukin 10 level; however, UF supplementation reversed the cytokines related to liver damage. UF significantly suppressed hepatic lipopolysaccharide binding protein, toll-like receptor 4 (TLR4), nuclear factor kappa B, and TNF-${\alpha}$ gene expression increases in response to chronic alcohol intake. Masson's trichrome staining revealed that UF improved mild hepatic fibrosis caused by alcohol, and UF also significantly increased the mRNA expressions and activities of superoxide dismutase and catalase in liver, and thus, decreased lipid peroxide and mitochondrial hydrogen peroxide levels. CONCLUSIONS: The findings of this study indicate that UF protects against alcohol-induced liver damage by inhibiting the TLR4 signaling pathway and activating the antioxidant system.

Antioxidant and Anti-inflammatory Effects of Yam (Dioscorea batatas Decne.) on Azoxymethane-induced Colonic Aberrant Crypt Foci in F344 Rats

  • Son, In Suk;Lee, Jeong Soon;Lee, Ju Yeon;Kwon, Chong Suk
    • Preventive Nutrition and Food Science
    • /
    • 제19권2호
    • /
    • pp.82-88
    • /
    • 2014
  • Yam (Dioscorea batatas Decne.) has long been used as a health food and oriental folk medicine because of its nutritional fortification, tonic, anti-diarrheal, anti-inflammatory, antitussive, and expectorant effects. Reactive oxygen species (ROS), which are known to be implicated in a range of diseases, may be important progenitors of carcinogenesis. The aim of this study was to investigate the modulatory effect of yam on antioxidant status and inflammatory conditions during azoxymethane (AOM)-induced colon carcinogenesis in male F344 rats. We measured the formation of aberrant crypt foci (ACF), hemolysate antioxidant enzyme activities, colonic mucosal antioxidant enzyme gene expression, and colonic mucosal inflammatory mediator gene expression. The feeding of yam prior to carcinogenesis significantly inhibited AOM-induced colonic ACF formation. In yam-administered rats, erythrocyte levels of glutathione, glutathione peroxidase (GPx), and catalase were increased and colonic mucosal gene expression of Cu/Zn-superoxide dismutase (SOD), Mn-SOD, and GPx were up-regulated compared to the AOM group. Colonic mucosal gene expression of inflammatory mediators (i.e., nuclear factor kappaB, inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor alpha, and interleukin-1beta) was suppressed by the yam-supplemented diet. These results suggest that yam could be very useful for the prevention of colon cancer, as they enhance the antioxidant defense system and modulate inflammatory mediators.

Suppression of the TRIF-dependent signaling pathway of toll-like receptors by (E)-isopropyl 4-oxo-4-(2-oxopyrrolidin-1-yl)-2-butenoate

  • Park, Se-Jeong;Park, Hye-Jeong;Kim, Soo-Jung;Shin, Hwa-Jeong;Min, In-Soon;Koh, Kwang-Oh;Kim, Dae-Young;Youn, Hyung-Sun
    • BMB Reports
    • /
    • 제44권7호
    • /
    • pp.468-472
    • /
    • 2011
  • Toll-like receptors (TLRs) are pattern recognition receptors that recognize molecular structures derived from microbes and initiate innate immunity. TLRs have two downstream signaling pathways, the MyD88- and TRIF-dependent pathways. Dysregulated activation of TLRs is closely linked to increased risk of many chronic diseases. Previously, we synthesized fumaryl pyrrolidinone, (E)-isopropyl 4-oxo-4-(2-oxopyrrolidin-1-yl)-2-butenoate (IPOP), which contains a fumaric acid isopropyl ester and pyrrolidinone, and demonstrated that it inhibits the activation of nuclear factor kappa B by inhibiting the MyD88-dependent pathway of TLRs. However, the effect of IPOP on the TRIF-dependent pathway remains unknown. Here, we report the effect of IPOP on signal transduction via the TRIF-dependent pathway of TLRs. IPOP inhibited lipopolysaccharide- or polyinosinic-polycytidylic acidinduced interferon regulatory factor 3 activation, as well as interferon-inducible genes such as interferon inducible protein-10. These results suggest that IPOP can modulate the TRIF-dependent signaling pathway of TLRs, leading to decreased inflammatory gene expression.

Anti-inflammatory Effects of Various Mushrooms in LPS-stimulated RAW264.7 Cells

  • Seo, Kyung Hye;Park, Jeong-Yong;Noh, Hyung-Jun;Lee, Ji Yeon;Lee, Eun Young;Han, Jae-Gu;Kim, Jin Hyo;Cheong, Mi Sun
    • 한국자원식물학회지
    • /
    • 제31권5호
    • /
    • pp.478-488
    • /
    • 2018
  • Mushrooms have been widely cultivated and consumed as foods and herbal medicines owing to their various biological properties. However, few studies have evaluated the anti-inflammatory effects of mushrooms. Here, we investigated the effects of mushroom extracts (MEs) on lipopolysaccharide (LPS)-induced inflammation in macrophages (RAW264.7 cells). First, we extracted MEs with either water or ethanol. Using LPS-treated RAW264.7 cells, we measured cell proliferation and NO production. Gene expression of tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), interleukin (IL)-6 (IL-6), and $IL-1{\beta}$ was assessed by RT-PCR, and protein abundance of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) and phosphorylation of p65 were determined by immunoblotting. MEs prepared using both water and ethanol inhibited LPS-induced inflammation in RAW264.7 cells. Nitric oxide (NO) levels induced by LPS were reduced by treatment with MEs. Isaria japonica Yasuda water extracts and Umbilicaria esculenta (Miyoshi) Minks ethanol extracts significantly decreased the mRNA expression of inflammation-related cytokine genes including $TNF-{\alpha}$, IL-6, and $IL-1{\beta}$. Similarly, the protein abundance of iNOS and COX-2 was also decreased. The phosphorylation of p65, a subunit of nuclear $factor-{\kappa}B$ was at least partly suppressed by MEs. This study suggests that mushrooms could be included in the diet to prevent and treat macrophage-related chronic immune diseases.

Transglutaminase-2 Is Involved in Expression of Osteoprotegerin in MG-63 Osteosarcoma Cells

  • Lee, Hye Ja;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • 제21권3호
    • /
    • pp.204-209
    • /
    • 2013
  • Osteoprotegerin (OPG) is a secreted glycoprotein and a member of the tumor necrosis factor receptor superfamily. It usually functions in bone remodeling, by inhibiting osteoclastogenesis through interaction with a receptor activator of the nuclear factor ${\kappa}B$ (RANKL). Transglutaminases-2 (Tgase-2) is a group of multifunctional enzymes that plays a role in cancer cell metastasis and bone formation. However, relationship between OPG and Tgase-2 is not studied. Therefore, we investigated the involvement of 12-O-Tetradecanoylphorbol 13-acetate in the expression of OPG in MG-63 osteosarcoma cells. Interleukin-$1{\beta}$ time-dependently induced OPG and Tgase-2 expression in cell lysates and media of the MG-63 cells by a Western blot. Additional 110 kda band was found in the media of MG-63 cells. 12-O-Tetradecanoylphorbol 13-acetate also induced OPG and Tgase-2 expression. However, an 110 kda band was not found in TPA-treated media of MG-63 cells. Cystamine, a Tgase-2 inhibitor, dose-dependently suppressed the expression of OPG in MG-63 cells. Gene silencing of Tgase-2 also significantly suppressed the expression of OPG in MG-63 cells. Next, we examined whether a band of 110 kda of OPG contains an isopeptide bond, an indication of Tgase-2 action, by monoclonal antibody specific for the isopeptide bond. However, we could not find the isopeptide bond at 110 kda but 77 kda, which is believed to be the band position of Tgase-2. This suggested that 110 kda is not the direct product of Tgase-2's action. All together, OPG and Tgase-2 is induced by IL-$1{\beta}$ or TPA in MG-63 cells and Tgase-2 is involved in OPG expression in MG-63 cells.

화어전(化瘀煎)이 조골세포 및 경골골절 유발 생쥐의 골유합에 미치는 영향 (Affirmative Effect of Hwaweo-jeon (Huayu-jian) in Osteoblast Cells and Tibia Fracture-induced Mice)

  • 이수환;;차윤엽
    • 한방재활의학과학회지
    • /
    • 제30권1호
    • /
    • pp.13-29
    • /
    • 2020
  • Objectives This study was performed to decide the bone union effect of Hwaweo-jeon on tibia fractured mice. Methods In this study, laboratory experiments were implemented by the stage of in vitro and in vivo. In in vitro, MC3T3-E1 cells were treated with various concentration of Hwaweo-jeon extract (HWJ). To investigate effect of HWJ for osteoblast, relative mRNA expression of 5 substances (alkaline phosphatase [ALP], runt-related transcription factor 2 [Runx2], osteocalcin [OCN], osterix [OSX] and collagen type II alpha 1 chain [Col2a1]) was used as a marker of osteogenesis. In order to determine HWJ's effect for fracture healing, relative gene expression level of ALP, Runx2, OCN, OSX and Col2a1 were used to find out the influence to osteoblast. Furthermore, receptor activator of nuclear factor kappa-B ligand and osteoprotegerin relative mRNA expression were used to estimate the impact to osteoclast. Also, X-ray was used for the purpose of identifying bone union in tibia-fracture mouse model. Results In in vitro experiment, most part of relative mRNA expression were increased compared to control group. In in vivo and in vitro experiment, HWJ induced osteoblast activitation by verifying relative mRNA expression of 5 substances. And in vivo experiment, we can also identify that HWJ triggered osteoclast activation during early stage of tibia fracture. Furthermore, X-ray pictures show noticeable recovery of tibia fracture. Conclusions HWJ extract promotes bone union by facilitating the osteoblast. But, HWJ may occur liver & kidney toxicity over specific concentration. Therefore, when HWJ is applied to human body, doctors have to follow up the liver function test & renal function test of patient.

Periodontal ligament proliferation and expressions of bone biomolecules upon orthodontic preloading: Clinical implications for tooth autotransplantation

  • Phutinart, Sasathorn;Krisanaprakornkit, Suttichai;Makeudom, Anupong;Suzuki, Boonsiva;Suzuki, Eduardo Yugo
    • 대한치과교정학회지
    • /
    • 제50권3호
    • /
    • pp.188-196
    • /
    • 2020
  • Objective: Preservation of the periodontal ligament (PDL) is vital to the success of tooth autotransplantation (TAT). Increased PDL volumes and facilitated tooth extraction have been observed upon orthodontic preloading. However, it is unclear whether any changes occur in the expressions of bone biomolecules in the increased PDL volumes. This study aimed to determine the expressions of runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), receptor activator of nuclear factor kappa-B ligand (RANKL), and osteoprotegerin (OPG) in PDL upon preloading. Methods: Seventy-two premolars from 18 patients were randomly assigned to experimental groups that received a leveling force for 1, 2, or 4 weeks or to a control unloaded group. Following extraction, PDL volumes from 32 premolars of eight patients (21.0 ± 3.8 years) were evaluated using toluidine blue staining. The expressions of the biomolecules in the PDL from 40 premolars of ten patients (21.4 ± 4.0 years) were analyzed via immunoblotting. Results: The median percentage of stained PDL was significantly higher at 2 and 4 weeks after preloading than in the unloaded condition (p < 0.05). The median RUNX2 and ALP expression levels were significantly higher at 2 and 4 weeks after preloading than in the unloaded condition (p < 0.05), whereas the median RANKL/OPG ratios were significantly higher at 1 and 4 weeks after preloading (p < 0.05). Conclusions: Orthodontic preloading for 4 weeks enhances PDL volumes as well as the expressions of RUNX2, ALP and the RANKL/OPG ratio in the PDL, suggesting this loading period is suitable for successful TAT.