• Title/Summary/Keyword: factor loading

Search Result 1,331, Processing Time 0.028 seconds

Dislodgement resistance of modified resin-bonded fixed partial dentures utilizing tooth undercuts: an in vitro study

  • Doh, Re-Mee;Lee, Keun-Woo
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.2
    • /
    • pp.85-90
    • /
    • 2009
  • STATEMENT OF PROBLEM. Over the years, resin-bonded fixed partial dentures (RBFPDs) have gone through substantial development and refinement. Several studies examined the biomechanics of tooth preparation and framework design in relation to the success rate of RBFPDs and considered retention and resistance form essential for increase of clinical retention. However, these criteria required preparations to be more invasive, which violates not only the original intentions of the RBFPD, but may also have an adverse effect on retention due to loss of enamel, an important factor in bonding. PURPOSE. The object of this in vitro study was to compare the dislodgement resistance of the new types of RBFPDs, the conventional three-unit fixed partial denture, and conventional design of RBFPD (Maryland bridge). MATERIAL AND METHODS. Fifty resin mandibular left second premolars and second molars were prepared on dentiforms, according to the RBFPD design. After model fabrication (five group, n = 10), prostheses were fabricated and cemented with zinc phosphate cement. After cementation, the specimens were subjected to tensile loading at a cross head speed of 4 mm/min in a universal testing machine. The separation load was recorded and analyzed statistically using one-way analysis of variance followed by Duncan's multiple range test. RESULTS. Group V, the pin-retained RBFPDs, had the highest mean dislodgement resistance, whereas specimens of group II, the conventional RBFPDs, exhibited a significantly lower mean dislodgement resistance compared to the other 4 groups (P <.05). There were no significant differences between group I, III, and IV in terms of dislodgement resistance (P>.05). Group V had the highest mean MPa (N/$mm^2$) (P <.05). There was no significant difference between groups I, II, III and IV (P > .05). CONCLUSION. Within the limits of the design of this in vitro study, it was concluded that: 1. The modified RBFPDs which utilizes the original tooth undercuts and requires no tooth preparation, compared with the conventional design of RBFPDs, has significantly high dislodgement resistance (P < .05). 2. The modified RBFPDs which utilizes the original tooth undercuts and requires minimal tooth preparation, compared with the conventional FPDs, has significantly no difference in retention and dislodgement resistance)(P>.05). 3. The pin-retained FPDs showed a high dislodgement resistance compared to the conventional three-unit FPDs (P<.05).

Cervical design effect of dental implant on stress distribution in crestal cortical bone studied by finite element analysis (유한요소법을 이용한 임플란트 경부 디자인이 골응력에 미치는 영향 분석)

  • Kim, Kyung-Tak;Jo, Kwang-Heon;Lee, Cheong-Hee;Yu, Won-Jae;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.385-393
    • /
    • 2009
  • Statement of problem: High stress concentration on the crestal cortical bone has been regraded as a major etiologic factor jeopardizing long term stability of endosseous implants. Purpose: To investigate if the design characteristics of crestal module, i.e. internal type, external type, and submerged type, affect stress distribution on the crestal cortical bone. Material and methods: A cylindrical shaped implant, 4.3 mm in diameter and 10 mm in length, with 3 different crestal modules, i.e. internal type, external type, and submerged type, were analysed. An axisymmetric scheme was used for finite elment formulation. A vertical load of 50 N and an oblique load of 50N acting at $45^{\circ}$ with the implant's long axis was applied. The peak crestal bone stress acting at the intersection of implant and crestal bone was compared. Results: Under vertical load, the crestal bone stress was high in the order of internal, external, and submerged types. Under the oblique loading condition, it was in the order of internal, submerged, and external types. Conclusion: Crestal module design was found to affect the level of the crestal bone stresses although the actual amount was not significant.

Geotechnical Engineering Progress with the Incheon Bridge Project

  • Cho, Sung-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.133-144
    • /
    • 2009
  • Incheon Bridge, 18.4 km long sea-crossing bridge, will be opened to the traffic in October 2009 and this will be the new landmark of the gearing up north-east Asia as well as the largest & longest bridge of Korea. Incheon Bridge is the integrated set of several special featured bridges including a magnificent cable-stayed girder bridge which has a main span of 800 m width to cross the navigation channel in and out of the Port of Incheon. Incheon Bridge is making an epoch of long-span bridge designs thanks to the fully application of the AASHTO LRFD (load & resistance factor design) to both the superstructures and the substructures. A state-of-the-art of the geotechnologies which were applied to the Incheon Bridge construction project is introduced. The most Large-diameter drilled shafts were penetrated into the bedrock to support the colossal superstructures. The bearing capacity and deformational characteristics of the foundations were verified through the world's largest static pile load test. 8 full-scale pilot piles were tested in both offshore site and onshore area prior to the commencement of constructions. Compressible load beyond 30,000 tonf pressed a single 3 m diameter foundation pile by means of bi-directional loading method including the Osterberg cell techniques. Detailed site investigation to characterize the subsurface properties had been carried out. Geotextile tubes, tied sheet pile walls, and trestles were utilized to overcome the very large tidal difference between ebb and flow at the foreshore site. 44 circular-cell type dolphins surround the piers near the navigation channel to protect the bridge against the collision with aberrant vessels. Each dolphin structure consists of the flat sheet piled wall and infilled aggregates to absorb the collision impact. Geo-centrifugal tests were performed to evaluate the behavior of the dolphin in the seabed and to verify the numerical model for the design. Rip-rap embankments on the seabed are expected to prevent the scouring of the foundation. Prefabricated vertical drains, sand compaction piles, deep cement mixings, horizontal natural-fiber drains, and other subsidiary methods were used to improve the soft ground for the site of abutments, toll plazas, and access roads. Light-weight backfill using EPS blocks helps to reduce the earth pressure behind the abutment on the soft ground. Some kinds of reinforced earth like as MSE using geosynthetics were utilized for the ring wall of the abutment. Soil steel bridges made of corrugated steel plates and engineered backfills were constructed for the open-cut tunnel and the culvert. Diverse experiences of advanced designs and constructions from the Incheon Bridge project have been propagated by relevant engineers and it is strongly expected that significant achievements in geotechnical engineering through this project will contribute to the national development of the longspan bridge technologies remarkably.

  • PDF

Seismic Curvature Ductility of RC Bridge Piers with 2.5 Aspect Ratio (형상비 2.5의 RC 교각의 내진 곡률연성도)

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Eun-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.1-12
    • /
    • 2004
  • Due to the 1989 Loma Prieta, 1995 Hyogoken Nambu earthquakes, etc, a number of bridge columns  were collapsed in flexure-shear failures as a consequence of the premature termination of the column longitudinal reinforcement. Nevertheless, previous researches for the performance of bridge columns were concentrated on the flexural failure mode. It is well understood that the seismic behaviour of RC bridge piers was dependent on the performance of the plastic hinge of RC bridge piers, the ductility of which was desirable to be computed on the basis of the curvature. Experimental investigation was made to evaluate the variation of the curvature of the plastic hinge  region for the seismic performance of earthquake-damaged RC columns in flexure-shear failure mode. Seven test specimens in the aspect ratio of 2.5 were made with test parameters: confinement ratios, lap splices, and retrofitting FRP materials. They were damaged under series of artificial earthquakes that could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading under a constant axial load, $P=0.1f_{ck}A_g$. Residual seismic capacity of damaged specimens was evaluated by analzying the moment-curvature hysteresis and the curvature ductility. Test results show that the biggest curvature was developed around 15cm above the footing, which induced the column failure. It was observed that RC bridge specimens with lap-spliced longitudinal steels appeared to fail at low curvature ductility but significant improvement was made in the curvature ductility of RC specimens with FRP straps wrapped around the plastic hinge region. Based on the experimental variation of the curvature of RC specimens, new equivalent length of the plastic hinge region was proposed by considering the lateral confinement in this study. The analytical and experimental relationship between the displacement and the curvature ductility were compared based on this proposal, which gave excellent result.

The Experimental study of B.E.P.(Biological Energy Projector) on the swimming Time of Mice and on the Recovery of Muscular Fatigue of Rats (B.E.P.가 생쥐의 수영능(水泳能)과 수영부하(水泳負荷)로 야기(惹起)된 흰쥐의 피로회복(疲勞恢復)에 미치는 실험적(實驗的) 연구(硏究))

  • Lee, Cheol-Wan
    • Journal of Haehwa Medicine
    • /
    • v.4 no.1
    • /
    • pp.357-371
    • /
    • 1995
  • We have completed a study to measure the contents of glucose, BUN, creatinine. LDH, and T-protein with respect to a fatigued condition in the bloods of rats which a constant swimming is loaded and to measure the maximun swimming time of mice The test has been carried out as a part of the basic study on the efficacy of B. E. P. (Biological Energy Projector) for emitting a light energy having a specific wavelength out of far-infrared rays. As a result. We have reached the following conclusions: 1. At testing of mice's maximun swimming time, all of B.E.P.(2. 4. 8. 24hrs) treated group have been increased in comparison with the control group, but only 24hrs-B.E.P. treated group significantly increased during 4 weeks. 2. The contents of glucose, BUN. creatinine, LDH, and T-protein measured immediately after the swimming of mice have been distinctly changed but not been significantly changed at their increase and decrease in comparison with the control group. 3. At 3rd day out of the swimming loading, the contents of glucose in the blood serum of the white rat have been distinctly increased in comparison with the control group. And 24hrs-B.E.P treated group surpassed 8hrs-B.E.P. treated group. 4. At 1st and 3rd day, the contents of creatinine in the blood serum of the white rat have been distinctly increased at B.E.P. (8, 24hrs) treated groups in comparison with the control group and have been recovered to the condition of the normal group. 5. After three days, the contents of BUN in the blood serum of the white rat have been significantly decreased in B.E.P.(8, 24hrs) treated groups at 3rd day in comparison with the control group and have been recovered to the condition of the normal group. 6. The contents of LDH in the blood serum of the white rat have been decreased in B.E.P.(8, 24hrs) treated groups at 3rd day in comparison with the control group, in particular 24hrs-B.E.P. treated group has been decreased distinctly than the normal group. 7. The contents of T-protein in the blood serum of the white rat have been distinctly increased in B.E.P. (8, 24hrs) treated groups at 3rd day in comparison with the control and normal group. As the above results, it has been proved that the execise of mice and the fatigue metabolism of rats were influenced by the light energy emitted the B.E.P., and it has been also proved that the external stimulation could be used as a preferable stimulative factor for the biological metabolism. If the clinical training and study are positively achieved, the B.E.P. would be used as curative means and preventive measures for helping human body.

  • PDF

Factors associated with the survival and marginal bone loss of dental implants: a 5-year retrospective study (임플란트의 생존과 변연골 소실에 영향을 미치는 인자들)

  • Song, Eul-Rak;Lee, Jae-Kwan;Um, Heung-Sik;Park, Se-Hwan;Chang, Beom-Seok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.4
    • /
    • pp.280-292
    • /
    • 2016
  • Purpose: The purpose of this study was to compare the long-term survival rate and peri-implant marginal bone loss related to multiple risk factors including the clinician's experience. Materials and Methods: Four hundred twenty implants in 146 patients, who had involved a supportive periodontal therapy program every 3 to 6 months and had follow up data for at least 5 years, were selected as the study group. Peri-implant marginal bone loss, data of demographic, implant and surgical characteristics were collected from peri-apical radiographs and chart review. Implant survival was regarded as the remaining with radiographic marginal bone level in excess of 50% of the fixture length for any reason. Results: The cumulative survival rate after 5 years of loading was 94.9%. In binary logistic regression analysis, smoking status (P = 0.033) and presence of spontaneous cover screw exposure (P < 0.001) were significantly related to 5-year survival of implants. In stepwise multiple regression analysis, smoking status (P < 0.001), type of abutment connection (P < 0.001) and implant surface (P = 0.033) were significantly related to peri-implant marginal bone level. And the year of resident was not statistically related to 5-year implant survival in simple logistic regression analysis (P = 0.171). Conclusion: Smoking status, spontaneous cover screw exposure, type of abutment connection and implant surface might influence the implant success. There was no significant correlation between the year of resident and implant failure.

Evaluation on the Behavioral Characteristics of Plastic Greenhouse by Full-scale Testing and Finite Element Analysis (재하시험과 유한요소해석에 의한 플라스틱 필름 온실의 거동특성 분석)

  • Ryu, Hee Ryong;Lee, Eung Ho;Cho, Myeong Whan;Yu, In Ho;Kim, Young Chul
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.459-465
    • /
    • 2012
  • This study analyzed the effect of semi-rigid rafter-purlin cross-linking connection and driven steel pipe base on the static behavior of plastic greenhouse (PG). To promote the time and cost efficiency of the assembly process, each cross-linking connections of space arch type grid that consists of rafter and purlin is linked with steel-wire buckles, and each end of the rafters was driven directly to the ground to support the PG structure. However, in the design process, cross-linking connections and bases are idealized by being categorized as fully rigid or frictionless pinned, which does not appropriately reflect actual conditions. This study takes a full-scale loading test of PG and analyzes the effect of member cross-linking connections and driven steel pipe base on the behavior of a structure. The analysis provided a basis for determining the rigidity factor of member cross-linking nodes needed for finite element analysis, and the reliability of the result regarding the static behavior of PG.

Concentration Distribution of PCBs in Soil Around Industrial Complex and Relationship with PCBs Sources (공단지역 주변 토양 중 PCBs 농도분포 및 발생원 추정에 관한 연구)

  • Park, Seok-Un;Kim, Kyoung-Soo;Kim, Jong-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.521-527
    • /
    • 2007
  • To investigate the relationship between PCB sources and concentration level in soil, PCBs concentration of 8 soil samples around Shiwa industrial complex were measured. The concentration of PCBs in soil samples were ranged from 2.43 to 274 ng/g dry (0.116 to 60.5 pg WHO-TEQ/g dry) md off-gas were ranged from 48.6 to $2872ng/m^3(0.00150\sim15.2ng\;WHO-TEQ/m^3)$; these are similar levels with results of previous study in Korea. The homologue patterns in soil samples were varied from sample to sample, but isomer patterns were very similar with each other. The two principal components were extracted by Principal Component Analysis(PCA) of 8 soil samples and cumulative factor loading was 95.7%. As the result of PCA, it could be expected that PCBs in soil samples of this study were more affected by PCB products than combustion process and mostly affected by already-known sources.

Characteristics of BCNU-loaded PLGA Wafers (BCNU를 함유한 생분해성 PLGA 웨이퍼의 특성분석)

  • 안태군;강희정;이진수;성하수;정제교
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.691-700
    • /
    • 2002
  • Interstitial therapy using biodegradable polymeric device loaded with anticancer agent can deliver the drug to the tumor site at high concentration, resulting in an increase of therapeutic efficacy. 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU, carmustine) is most commonly used as chemotherapeutic agent for brain tumors. The design of implantable device is regarded as an important factor lot the efficient delivery of antitumor agent to targeting site. In order to control the release profile of drug, the release pattern of BCNU with the changes of various dimension and additives was investigated. The PLGA wafers containing 3.85, 10, 20 and 30% of BCNU were prepared in various shape (diameter of 3, 5 and 10 mm, thickness of 0.5, 1 and 2 mm) by direct compression method. In vitro drug release profile of BCNU-loaded PLGA wafers could be controlled by changing the dimension of wafers such as initial drug content, weight, diameter, thickness, volume and surface area of wafers, as well as PLGA molecular weight and additives. Drug release from BCNU-loaded PLGA wafers was facilitated with an increase of BCNU-loading amount or presence of poly(N-vinylpyrrolidone)(PVP) or sodium chloride (NaCl). The effects of various geometric factors and additives on the BCNU release pattern were confirmed by the investigation of mass loss and morphology of BCNU-loaded PLGA wafers.

Anti-lipase and Lipolytic Activities of EtOH Extract from Juniperus rigida (노간주나무 에탄올추출물의 지방 흡수 억제 및 지방분해 효능)

  • Lee, Young-Seop;Kim, Jung-Hhyun;Kim, Hyo-Jun;Sohn, Eun-Jin;Kim, Chan-Sik;Jeong, Il-Ha;Jo, Kyu-Hyung;Kim, Joo-Hwan;Kim, Jin-Sook
    • Korean Journal of Pharmacognosy
    • /
    • v.41 no.3
    • /
    • pp.216-220
    • /
    • 2010
  • Obesity is an important risk factor that significantly increases mortality and disease rates in the cardiovascular disease, diabetes, and various diseases. So far, the most powerful way to inhibit fat absorption is pancreatic lipase inhibitors. In this study, we investigated the anti-obesity effect of the extract of Juniperus rigida. Juniperus rigida extract (JRE) had a inhibitory effect on pancreatic lipase activity ($IC_{50}$=8.63 ${\mu}g$/ml). In in vivo oil-emulsion loading test, this extract also inhibited the intestinal fat absorption. In addition, we measured inhibitory effects of JRE on activity of phosphodiesterase (PDE) and hormone sensitive lipase (HSL) among the important enzymes associated with lipolysis. JRE strongly inhibited PDE activity ($IC_{50}$=4.56 ${\mu}g$/ml), whereas inhibitory effect on HSL activity was very weak compared with orlistat. As a result, JRE inhibited the absorption of fat by inhibiting the activity of pancreatic lipase and induced lipolysis through inhibition of PDE activity. Therefore, we suggest that Juniperus rigida may be a potential therapeutic agent improving obesity.