• 제목/요약/키워드: factor conditions

검색결과 5,263건 처리시간 0.033초

Damping modification factor of pseudo-acceleration spectrum considering influences of magnitude, distance and site conditions

  • Haizhong Zhang;Jia Deng;Yan-Gang Zhao
    • Earthquakes and Structures
    • /
    • 제25권5호
    • /
    • pp.325-342
    • /
    • 2023
  • The damping modification factor (DMF) is used to modify the 5%-damped response spectrum to produce spectral values that correspond to other necessary damping ratios for seismic design. The DMF has been the subject of numerous studies, and it has been discovered that seismological parameters like magnitude and distance can have an impact on it. However, DMF formulations incorporating these seismological parameters cannot be directly applied to seismic design because these parameters are not specified in the present seismic codes. The goal of this study is to develop a formulation for the DMF that can be directly applied in seismic design and that takes the effects of magnitude, distance, and site conditions into account. To achieve this goal, 16660 ground motions with magnitudes ranging from 4 to 9 and epicentral distances ranging from 10 to 200 km are used to systematically study the effects of magnitude, distance, and site conditions on the DMF. Furthermore, according to the knowledge that magnitude and distance affect the DMF primarily by changing the spectral shape, a spectral shape factor is adopted to reflect influences of magnitude and distance, and a new formulation for the DMF incorporating the spectral shape factor is developed. In comparison to the current formulations, the proposed formulation provides a more accurate prediction of the DMF and can be employed directly in seismic design.

Development of Critical Heat Flux Correction Factor for Water under Flow Oscillation Conditions

  • Kim, Yun-Il;Baek, Won-Pil;Chang, Soon-Heung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 추계학술발표회논문집(1)
    • /
    • pp.242-247
    • /
    • 1996
  • Flow oscillations in boiling channels induces a drastic reduction of the (critical heat flux) CHF or premature burnout. However, most of CHF works and correlations have been focused on stable flow conditions without considering flow oscillation. Therefore to improve the understanding on flow oscillation CHF, in this paper a new CHF correction factor to predict the CHF values under flow oscillation conditions has been developed from 126 experimental data. Also to investigate the dominant factor on flow oscillation CHF parametric trends are analyzed by using the developed correction factor. The overall mean accuracy ratio of the developed correction factor is 1.033 with a standard deviation of 0.195. The RMS errors 0.198. Its assessment shows that the predictions agree well with the experimental data within 25% error bounds.

  • PDF

실제 설치 및 유지보수 조건을 고려한 고속도로 터널조명 보수율 산정 연구 (A Study on the Calculation of Maintenance Factor(MF) of Tunnel Lighting in Expressway Considering the Actual Installation and Maintenance Conditions)

  • 이민욱;박광용;김필영;박용진;김훈
    • 조명전기설비학회논문지
    • /
    • 제27권3호
    • /
    • pp.7-15
    • /
    • 2013
  • In lighting design, the calculation of maintenance factor is performed by calculation considering light source, characteristics of luminaire and environmental factors. The method to calculate the current maintenance factor applied to tunnel lighting design takes into consideration only pollution factors in tunnels. In addition, the calculation method should be change in response to changes of tunnel conditions and used light sources. In this study, the calculated factor of the maintenance factor in tunnel is determine by four calculation factors generally applied to the calculation of maintenance factor. This study examined the method of calculating the maintenance factor of tunnel lighting that can be applied according to the installation conditions in designing tunnel lighting by applying the actual installation data of luminaire.

가솔린 차량의 각 요소별 연료소모량 예측 (Prediction of Vehicle Fuel Consumption on a Component Basis)

  • 송해박;유정철;이종화;박경석
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.203-210
    • /
    • 2003
  • A simulation study was carried to analyze the vehicle fuel consumption on component basis. Experiments was also carried out to identify the simulation results, under FTP-75 Hot Phase driving conditions. and arbitrary driving conditions. A good quantitative agreement was obtained. Based on the simulation, fuel energy was used in pumping loss(3.7%), electric power generation(0.7%), engine friction(12.7%), engine inertia(0.7%), torque converter loss(4.6%), drivetrain friction(0.6%), road-load(9.2%), and vehicle inertia(13.4%) under FTP-75 Hot Phase driving conditions. Using simulation program, the effects of capacity factor and idle speed on fuel consumption were estimated. A increment of capacity factor of torque converter resulted in fuel consumption improvement under FTP-75 Hot Phase driving conditions. Effect of a decrement of idle speed on fuel consumption was negligible under the identical driving conditions.

혼합계수(K-Factor) 증가에 따른 사업장의 환기 조건 및 효율 개선에 관한 연구 (An Experimental Study for the Improvement of Ventilation Conditions and Effectiveness in the Manufacturing Industry by Increasing the Mixing Factor (K-Factor))

  • 이윤호;이석원;이경호;김현욱
    • 한국산업보건학회지
    • /
    • 제29권3호
    • /
    • pp.343-350
    • /
    • 2019
  • Objectives: This study aims to identify whether ventilation conditions and their effectiveness can be significantly improved in an experimental chamber by increasing the mixing factor (K-Factor). Methods: In a chamber with a volume of $1m^3$, air velocity was measured at six different points with four roof fans in the upper part of the chamber being operated in order. The impact of the ventilation conditions was analyzed when the flow rates were increasing and the first inlet of the chamber was either open or closed. Smoke patterns were also observed at four corner points where ventilation was limited. Kruskal Wallis and Mann-Whitney tests were performed to compare air velocities measured in the chamber. Results: The air velocities measured at only the third point increased significantly from $0.03{\pm}0.03m/s$ (door open) and $0.05{\pm}0.06m/s$ (door closed) with two fans, $0.08{\pm}0.08m/s$ with three fans, and $0.09{\pm}0.09m/s$ with four fans operating (p<0.05). However, air velocities at the four corner points did not significantly increase. Smoke patters also showed that the open inlet of the chamber had no effect on improvement of ventilation conditions and effectiveness. Conclusions: In this study, the air velocities at six points in the chamber did not significantly increase despite the increase in the mixing factor and flow rates of ventilation in the controlled environment. Therefore, the inflow of outdoor air throughout an open inlet and installation of a forced ventilation system can potentially increase the indoor air velocity and improve ventilation condition without an increase in the mixing factor.

재료 및 윤활제에 따른 전단 마찰 상수값과 평가 (The evaluation of friction factor according to materials and lubricants)

  • 김동진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.119-124
    • /
    • 1999
  • Quantitative evaluation of the tribological conditions at the tool-workpiece interface in metal forming is usually accomplished by the ring-compressinon. test This paper describes an experimental investigation into shear friction factor under cold and hot forming conditions according to materials and lubricants using the ring compression test. Six different materials and five different lubricants were applied in the experiments. calibration curves with the friction coefficient were obtained using FEM analysis and verified by the verified by the experimental results. The influence of materials and lubricants level on friction are discussed. In the ring compression test the shear friction factor has a different from steels and aluminum water base graphite lubricants on cold working conditions and hot working conditions.

  • PDF

다양한 분사조건과 LPG 액상분사엔진의 연료량 제어 (Various Injection Conditions and Fuel Control of an LPG Liquid Injection Engine)

  • 심한섭
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.28-35
    • /
    • 2005
  • Fuel injection rate of an injector is affected by various injection conditions such as injection duration, fuel temperature, injection pressure, and voltage in LPG liquid injection systems for either a port-fuel-injection(PFI) or a direct injection(DI) in a cylinder. Even fuel injection conditions are changed, the air-fuel ratio should be accurately controlled to educe exhaust emissions. In this study, correction factor for the fuel injection rate of an injector is derived from the density ratio and the pressure difference ratio. A voltage correction factor is researched from injection test results on an LPG liquid injection engine. A compensation method of the fuel injection rate is proposed for a fuel injection control system. The experimental results for the LPG liquid injection system in a SI-engine show that this system works well on experimental range of engine speed and load conditions. And the fuel injection rate is accurately controlled by the proposed compensation method.

One-factor 모형을 이용한 주식 포트폴리오 VaR에 관한 연구 (An One-factor VaR Model for Stock Portfolio)

  • 박근희;고광이;백장선
    • 응용통계연구
    • /
    • 제26권3호
    • /
    • pp.471-481
    • /
    • 2013
  • J. P. Morgan의 RiskMetrics을 기반으로 하는 현행 VaR 모형은 구조적으로 미래 경기상황을 반영할 수 없는 단점으로 인해 불안정한 경기상황에서는 손실이 VaR을 초과하는 결정적인 문제점을 내포하고 있다. 어느 기업의 미래의 주가는 해당 기업만의 고유요인은 물론 모든 기업의 주가에 공통적으로 영향을 미치는 경기변동 공통요인에 의해 결정된다. 따라서 본 연구에서는 주가의 변동요인을 기업의 고유요인과 경기변동 공통요인으로 구분하여, 미래 경기변동 공통요인에 대해서는 현재시점에서 예측한 값을 사용하는 원-팩터(One-factor) VaR 모형을 제안한다. 이와 같은 원-팩터 VaR 모형은 미래의 예측된 경기상황을 반영을 반영하여 손실이 VaR을 초과하는 현행 VaR 모형의 문제점을 해결할 수 있을 뿐만 아니라 자산의 목표보유기간을 증가시켜 경기변동에 따른 손실을 최소화하기 위한 포트폴리오에 대한 자산구성과 자금이전을 선제적으로 실시할 수가 있다.

균일입구유속 조건의 나선관 입구영역의 층류 유동 (LAMINAR FLOW IN THE ENTRANCE REGION OF HELICAL TUBES FOR UNIFORM INLET VELOCITY CONDITIONS)

  • 김영인;박종호
    • 한국전산유체공학회지
    • /
    • 제13권1호
    • /
    • pp.21-27
    • /
    • 2008
  • A numerical study for laminar flow in the entrance region of helical tubes for uniform inlet velocity conditions is carried out by means of the finite volume method to investigate the effects of Reynolds number, pitch and curvature ratio on the flow development. This results cover a curvature ratio range of 1/10$\sim$1/320, a pitch range of 0.0$\sim$3.2, and a Reynolds number range of 125$\sim$2000. It has been found that the curvature ratio does significantly effect on the angle of flow development, but the pitch and Reynolds number do not. The characteristic angle $\phi_c(=\phi/\sqrt{\delta})$, or the non-dimensional length $\overline{l}(=l\sqrt{\delta}cos(atan\lambda)/d)$ can be used to represent the flow development for uniform inlet velocity conditions. In uniform inlet velocity conditions, the growth of boundary layer delays the flow development attributed to centrifugal force, and in which conditions the amplitude of flow oscillations is smaller than that in parabolic inlet velocity conditions. If the pitch increases or if the curvature ratio or Reynolds number decreases, the minimum friction factor and the fully developed average friction factor normalized with the friction factor of a straight tube and the flow oscillations decrease.

다차로도로의 서비스수준 분석을 위한 속도보정계수 개선에 관한 연구 (New Speed Adjustment Factor for Analyzing Level of Service at Multi-Lane Highway)

  • 김원길;강원의;노창균;박범진
    • 한국도로학회논문집
    • /
    • 제14권6호
    • /
    • pp.167-173
    • /
    • 2012
  • PURPOSES : This study is to develop speed correction factor for more realistic Level-of-Service(LOS) at multilane highway. METHODS : In this study, we compared speed difference the degree of speed reductions in actual multilane road conditions with speed reduction considering speed correction factor presented in highway capacity manual using statistical techniques. And also we presents new speed correction factor analyzing collected data at national highway No.1 (Goyang~Wolrung). RESULTS : The result of analyzing and comparing new suggested speed correction factor with speed correction factor in Korea Highway Capacity Manual (KHCM) shows RMSE (Root Mean Square Error) in new speed correction factor (RMSE 1.5) is much lower than existing speed correction factor (RMSE 13.4). New suggested speed correction can be used for analyzing Level-of-Service at multilane highway. And also we suggests improvements for analysis procedure in analyzing Level-of-Service at multilane highway CONCLUSIONS : As a result of comparing differences, we draw the causes that effect the differences in speed and suggest new speed correction factor that consider traffic volumes. It can be more rational because it uses speed correction factor which can consider more realistic traffic conditions, etc.