International Journal of Fuzzy Logic and Intelligent Systems
/
v.4
no.2
/
pp.217-222
/
2004
A person does communication between each other using language. But, In the case of disabled person, cannot communicate own idea to use writing and gesture. We embodied communication system using the EEG so that disabled person can do communication. After feature extraction of the EEG included facial muscle signals, it is converted the facial muscle into control signal, and then did so that can select character and communicate idea.
Journal of the Korea Institute of Information and Communication Engineering
/
v.12
no.9
/
pp.1547-1553
/
2008
This paper presents a method that generates various facial expressions of vector graphic character by using the simplified principle component vector. First, we analyze principle components to the nine facial expression(astonished, delighted, etc.) redefined based on Russell's internal emotion state. From this, we find principle component vector having the biggest effect on the character's facial feature and expression and generate the facial expression by using that. Also we create natural intermediate characters and expressions by interpolating weighting values to character's feature and expression. We can save memory space considerably, and create intermediate expressions with a small computation. Hence the performance of character generation system can be considerably improved in web, mobile service and game that real time control is required.
In this paper, we develop an Intelligent Wheelchair(IW) control system for the people with various disabilities. The aim of the proposed system is to increase the mobility of severely handicapped people by providing an adaptable and effective interface for a power wheelchair. To facilitate a wide variety of user abilities, the proposed system involves the use of face-inclination and mouth-shape information, where the direction of an Intelligent Wheelchair(IW) is determined by the inclination of the user's face, while proceeding and stopping are determined by the shape of the user's mouth. To analyze these gestures, our system consists of facial feature detector, facial feature recognizer, and converter. In the stage of facial feature detector, the facial region of the intended user is first obtained using Adaboost, thereafter the mouth region detected based on edge information. The extracted features are sent to the facial feature recognizer, which recognize the face inclination and mouth shape using statistical analysis and K-means clustering, respectively. These recognition results are then delivered to a converter to control the wheelchair. When assessing the effectiveness of the proposed system with 34 users unable to utilize a standard joystick, the results showed that the proposed system provided a friendly and convenient interface.
Journal of International Society for Simulation Surgery
/
v.1
no.2
/
pp.57-61
/
2014
We present a robust 3D facial reconstruction method using a single image generated by face-specific super resolution technique. Based on the several consecutive frames with low resolution, we generate a single high resolution image and a three dimensional facial model based on it. To do this, we apply PME method to compute patch similarities for SR after two-phase warping according to facial attributes. Based on the SRI, we extract facial features automatically and reconstruct 3D facial model with basis which selected adaptively according to facial statistical data less than a few seconds. Thereby, we can provide the facial image of various points of view which cannot be given by a single point of view of a camera.
Understanding of human emotion has a high importance in interaction between human and machine communications systems. The most expressive and valuable way to extract and recognize the human's emotion is by facial expression analysis. This paper presents and implements an automatic extraction and recognition scheme of facial expression and emotion through still image. This method has three main steps to recognize the facial emotion: (1) Detection of facial areas with skin-color method and feature maps, (2) Creation of the Bezier curve on eyemap and mouthmap, and (3) Classification and distinguish the emotion of characteristic with Hausdorff distance. To estimate the performance of the implemented system, we evaluate a success-ratio with emotional face image database, which is commonly used in the field of facial analysis. The experimental result shows average 76.1% of success to classify and distinguish the facial expression and emotion.
Understanding and classification of the human's emotion play an important tasks in interacting with human and machine communication systems. This paper proposes a novel emotion recognition method by extracting facial keypoints, which is able to understand and classify the human emotion, using active Appearance Model and the proposed classification model of the facial features. The existing appearance model scheme takes an expression of variations, which is calculated by the proposed classification model according to the change of human facial expression. The proposed method classifies four basic emotions (normal, happy, sad and angry). To evaluate the performance of the proposed method, we assess the ratio of success with common datasets, and we achieve the best 93% accuracy, average 82.2% in facial emotion recognition. The results show that the proposed method effectively performed well over the emotion recognition, compared to the existing schemes.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.45
no.1
/
pp.1-10
/
2008
In this paper, we designed a facial feature(eyes, a moult and a nose) detection hardware based on the ICT transform which was developed for face detection earlier. Our design used a pipeline architecture for high throughput and it also tried to reduce memory size and memory access rate. The algerian and its hardware implementation were tested on the BioID database, which is a worldwide face detection test bed, and its facial feature detection rate was 100% both in software and hardware, assuming the face boundary was correctly detected. After synthesizing the hardware on Dongbu $0.18{\mu}m$ CMOS library, its die size was $376,821{\mu}m^2$ with the maximum operating clock 78MHz.
This paper presents vision-based 3D facial expression animation technique and system which provide the robust 3D head pose estimation and real-time facial expression control. Many researches of 3D face animation have been done for the facial expression control itself rather than focusing on 3D head motion tracking. However, the head motion tracking is one of critical issues to be solved for developing realistic facial animation. In this research, we developed an integrated animation system that includes 3D head motion tracking and facial expression control at the same time. The proposed system consists of three major phases: face detection, 3D head motion tracking, and facial expression control. For face detection, with the non-parametric HT skin color model and template matching, we can detect the facial region efficiently from video frame. For 3D head motion tracking, we exploit the cylindrical head model that is projected to the initial head motion template. Given an initial reference template of the face image and the corresponding head motion, the cylindrical head model is created and the foil head motion is traced based on the optical flow method. For the facial expression cloning we utilize the feature-based method, The major facial feature points are detected by the geometry of information of the face with template matching and traced by optical flow. Since the locations of varying feature points are composed of head motion and facial expression information, the animation parameters which describe the variation of the facial features are acquired from geometrically transformed frontal head pose image. Finally, the facial expression cloning is done by two fitting process. The control points of the 3D model are varied applying the animation parameters to the face model, and the non-feature points around the control points are changed by use of Radial Basis Function(RBF). From the experiment, we can prove that the developed vision-based animation system can create realistic facial animation with robust head pose estimation and facial variation from input video image.
Park Ji-Sook;Ohm Seong-Yong;Jo Hyun-Hee;Chung Min-Gyo
Journal of Korea Multimedia Society
/
v.9
no.2
/
pp.234-243
/
2006
The recent rapid development of HCI and surveillance technologies has brought great interests in application systems to process faces. Much of research efforts in these systems has been primarily focused on such areas as face recognition, facial expression analysis and facial feature extraction. However, not many approaches have been reported toward face direction detection. This paper proposes a method to detect the direction of a face using a facial feature called facial triangle, which is formed by two eyebrows and the lower lip. Specifically, based on the single monocular view of the face, the proposed method introduces very simple formulas to estimate the horizontal or vertical rotation angle of the face. The horizontal rotation angle can be calculated by using a ratio between the areas of left and right facial triangles, while the vertical angle can be obtained from a ratio between the base and height of facial triangle. Experimental results showed that our method makes it possible to obtain the horizontal angle within an error tolerance of ${\pm}1.68^{\circ}$, and that it performs better as the magnitude of the vertical rotation angle increases.
Journal of the Institute of Electronics and Information Engineers
/
v.51
no.11
/
pp.193-201
/
2014
This paper suggests a facial expression recognition system using face detection, face alignment, facial unit extraction, and training and testing algorithms based on AdaBoost classifiers. First, we find face region by a face detector. From the results, face alignment algorithm extracts feature points. The facial units are from a subset of action units generated by combining the obtained feature points. The facial units are generally more effective for smaller-sized databases, and are able to represent the facial expressions more efficiently and reduce the computation time, and hence can be applied to real-time scenarios. Experimental results in real scenarios showed that the proposed system has an excellent performance over 90% recognition rates.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.