• Title/Summary/Keyword: face volume

Search Result 256, Processing Time 0.025 seconds

Study of Forming Properties for an Edge Thickening Model Using the Finite Element Method (유한요소해석을 이용한 증육 모델의 성형특성 연구)

  • Cho, C.D.;Kim, Y.J.
    • Transactions of Materials Processing
    • /
    • v.21 no.4
    • /
    • pp.234-239
    • /
    • 2012
  • This study examines the forming properties and forming loads needed to increase the edge thickness on the external face of a plate using finite element analysis(FEA). Recently, forming optimization techniques within FEA are being extensively used in designing the optimal forming conditions for processes like forging, extrusion, rolling, and spinning. Most of these existing forming operations involve reducing the volume per unit length, but research for increasing volume per unit length is not very extensive. For this study we chose an automotive engine flywheel which is a welded assembly of a plate and a gear with each component having a different thickness. We considered a forming technique to increase the thickness in order to allow the machining of the gear directly on the external face of plate alleviating the need for a weld. To study various forming techniques, we used the finite element method with the flow stress of material and incremental forming steps. We conclude from this study that the analysis of forming properties and forming loads by using the finite element analysis and testing is useful as a method to increase the thickness per unit length.

3D Face Recognition using Longitudinal Section and Transection (종단면과 횡단면을 이용한 3차원 얼굴 인식)

  • 이영학;박건우;이태홍
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.9
    • /
    • pp.885-893
    • /
    • 2003
  • In this paper, a new practical implementation of a person verification system using features of longitudinal section and transection and other facial, rotation compensated 3D face image, is proposed. The approach works by finding the nose tip that has a protrusion shape on the face. In feature recognition of 3D face image, one has to take into consideration the orientated frontal posture to normalize. Next, the special points in regions, such as nose, eyes and mouth are detected. The depth of nose, the area of nose and the volume of nose based both on the 3 longitudinal section and a transection are calculated. The eye interval and mouth width are also computed. Finally, the 12 features on the face were extracted. The Ll measure for comparing two feature vectors were used, because it is simple and robust. In the experimental results, proposed method achieves recognition rate of 95.5% for the longitudinal section and transection.

A Study on Engine Durability Considering Oil Consumption and Wear of Piston-Ring Pack and Cylinder Bore (피스톤 링 팩 및 실린더 보아 마모와 오일소모를 고려한 엔진 내구수명 연구)

  • Chun Sang-Myung
    • Tribology and Lubricants
    • /
    • v.22 no.3
    • /
    • pp.155-163
    • /
    • 2006
  • Ring, groove and cylinder bore wear may not be a problem in most current automotive engines. However, a small change in ring face, groove geometry and cylinder bore diameter can significantly affect the lubrication characteristics and ring axial motion. This in turn can cause to change inter-ring pressure, blowby and oil consumption in an engine. Therefore, by predicting the wear of piston ring face, ring groove and cylinder bore altogether, the changed ring end gap and the changed volume of gas reservoir can be calculated. Then the excessive oil consumption can be predicted. Being based on the calculation of gas flow amount by the theory of piston ring dynamics and gas flow, and the calculation of oil film thickness and friction force by the analysis of piston ring lubrication, the calculation theory of oil amount through top ring gap into combustion chamber will be set. This is estimated as engine oil consumption. Furthermore, the wear theories of ring, groove and cylinder bore are included. Then the each amount of wear is to be obtained. The changed oil consumption caused by the new end gap and the new volume of oil reservoir around second land, can be calculated at some engine running interval. Meanwhile, the wear amount and oil consumption occurred during engine durability cycle are compared with the calculated values. Next, the calculated amount of oil consumption and wear are compared with the guideline of each part's wear and oil consumption. So, the timing of part repair and engine life cycle can be predicted in advance without performing engine durability test. The wear data of rings, grooves and cylinder bore are obtained from three engines before and after engine durability test. The calculated wear data of each part are turn out to be around the band of averaged test values or a little below.

Skin Volume Augmentation and Anti-wrinkle Effects of Tribulus terrestris Fruit Extract (질려자 추출물의 피부 볼륨 증진 및 주름개선 효과)

  • Kim, Mi Jin;Jung, Taek Kyu;Park, Hyun-Chul;Yoon, Kyung-Sup
    • KSBB Journal
    • /
    • v.31 no.3
    • /
    • pp.178-185
    • /
    • 2016
  • Aging of the face is mainly related to the features that are sagging or loss of elasticity of the skin by reducing the volume around the eyes or cheek. Intrinsic aging can be seen to cause thinner dermis, reduction of extracellular matrix and subcutaneous fat. This study was carried out to investigate the skin volume augmentation and anti-wrinkle effects of Tribulus terrestris fruit extract. Skin anti-aging effect of Tribulus terrestris fruit extract was evaluated by using lipid accumulation, expressin of type I procollagen and elastin in preadipocytes and human dermal fibroblasts. Tribulus terrestris fruit extract augmented preadipocytes differentiation about 56% at 100 µg/mL. The type I procollagen and elastin were increased about 35% and 25% by treatment 20% Tribulus terrestris fruit extract, respectively. The clinical study also showed that skin sagging, skin elasticity, and dermal density improved without adverse effect following 4 week application of cream containing 2% Tribulus terrestris fruit extract. We suggest that Tribulus terrestris fruit extract can have the good possibility as skin volume augmenting, skin elasticity and wrinkle improving agent.

Evaluation of Masseter Muscle Volume after Contouring of Prominent Mandible Angle by Measurement of CT Scan Image

  • Kim, Yong Oock;Choi, Jong Woo
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.2
    • /
    • pp.71-74
    • /
    • 2014
  • Purpose The prominent mandible angle, otherwise known as "square face", has been recognized as an aesthetic problem that needs correction by many in the Asian community. Many surgeons considered that mandible angle ostectomy alone, brings about hypotrophy of the masseter muscle. However, it was only proven indirectly (by clinical experience and histological animal experiments) and not objectively. In this study, we evaluated the volume of masseter muscle to prove the effect, objectively. Materials and method Computed tomography (CT) images were used to measure the masseter muscle volume of normal female group (n=6), and of female patient group n=8, preoperative and early & late postoperative volumes) presenting the symptom of prominent mandible angle. The data was analyzed statistically by two-sample t-test and paired t-test using SAS (version 8.2). Results In normal female group, volume average was $16,142{\pm}2,829.8mm^3$. In patient group, preoperative volume averaged $24,447{\pm}4,544.5mm^3$ (p<0.0001), early postoperative volume measured average of $31,966{\pm}50,421mm^3$ which is a 30% increase from the preoperative volume (p<0.0001). Late postoperative measurement was $20,202{\pm}4,092.3mm^3$, which is a 20% decrease from the preoperative volume (p<0.0006). Conclusion The bone reduction of prominent mandible angle induce the hypotrophic effect of masseter muscle after long term follow up (5 more months). This result mean that the result of mandible angle contouring surgery can be considered as combined effect of bony angle reduction and subsequent masseter muscle hypotrophy.

Analysis of buckling response of functionally graded sandwich plates using a refined shear deformation theory

  • Abdelhak, Z.;Hadji, L.;Khelifa, Z.;Hassaine Daouadji, T.;Adda Bedia, E.A.
    • Wind and Structures
    • /
    • v.22 no.3
    • /
    • pp.291-305
    • /
    • 2016
  • In this paper, a refined shear deformation plate theory which eliminates the use of a shear correction factor was presented for FG sandwich plates composed of FG face sheets and an isotropic homogeneous core. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the plate. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Based on the present refined shear deformation plate theory, the governing equations of equilibrium are derived from the principle of virtual displacements. Numerical illustrations concern buckling behavior of FG sandwiches plates with Metal-Ceramic composition. Parametric studies are performed for varying ceramic volume fraction, volume fraction profiles, Boundary condition, and length to thickness ratios. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

Theoretical investigation on vibration frequency of sandwich plate with PFRC core and piezomagnetic face sheets under variable in-plane load

  • Arani, Ali Ghorbanpour;Maraghi, Zahra Khoddami;Ferasatmanesh, Maryam
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.65-76
    • /
    • 2017
  • This research investigated the vibration frequency of sandwich plate made of piezoelectric fiber reinforced composite core (PFRC) and face sheets of piezomagnetic materials. The effective electroelastic constants for PFRC materials are obtained by the micromechanical approach. The resting medium of sandwich plate is modeled by Pasternak foundation including normal and shear modulus. Besides, sandwich plate is subjected to linearly varying normal stresses that change by load factor. The coupled equations of motion are derived using first order shear deformation theory (FSDT) and energy method. These equations are solved by differential quadrature method (DQM) for simply supported boundary condition. A detailed numerical study is carried out based on piezoelectricity theory to indicate the significant effect of load factor, volume fraction of fibers, modulus of elastic foundation, core-to-face sheet thickness ratio and composite materials on dimensionless frequency of sandwich plate. These findings can be used to aerospace, building and automotive industries.

Vibration analysis of sandwich sectorial plates considering FG wavy CNT-reinforced face sheets

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.541-557
    • /
    • 2018
  • This paper presents the influence of carbon nanotubes (CNTs) waviness and aspect ratio on the vibrational behavior of functionally graded nanocomposite sandwich annular sector plates resting on two-parameter elastic foundations. The carbon nanotube-reinforced (CNTR) sandwich plate has smooth variation of CNT fraction along the thickness direction. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness and their mechanical properties are estimated by an extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. Effects of CNT distribution, volume fraction, aspect ratio and waviness, and also effects of Pasternak's elastic foundation coefficients, sandwich plate thickness, face sheets thickness and plate aspect ratio are investigated on the free vibration of the sandwich plates with wavy CNT-reinforced face sheets. The study is carried out based on three-dimensional theory of elasticity and in contrary to two-dimensional theories, such as classical, the first- and the higher-order shear deformation plate theories, this approach does not neglect transverse normal deformations. The sandwich annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free.

Three-dimensional limit analysis of seismic stability of tunnel faces with quasi-static method

  • Zhang, B.;Wang, X.;Zhang, J.S.;Meng, F.
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.301-318
    • /
    • 2017
  • Based on the existing research results, a three-dimensional failure mechanism of tunnel face was constructed. The dynamic seismic effect was taken into account on the basis of quasi-static method, and the nonlinear Mohr-Coulomb failure criterion was introduced into the limit analysis by using the tangent technique. The collapse pressure along with the failure scope of tunnel face was obtained through nonlinear limit analysis. Results show that nonlinear coefficient and initial cohesion have a significant impact on the collapse pressure and failure zone. However, horizontal seismic coefficient and vertical seismic proportional coefficient merely affect the collapse pressure and the location of failure surface. And their influences on the volume and height of failure mechanism are not obvious. By virtue of reliability theory, the influences of horizontal and vertical seismic forces on supporting pressure were discussed. Meanwhile, safety factors and supporting pressures with respect to 3 different safety levels are also obtained, which may provide references to seismic design of tunnels.

Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure

  • Mehar, Kulmani;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.565-578
    • /
    • 2018
  • This research article reported the nonlinear finite solutions of the nonlinear flexural strength and stress behaviour of nano sandwich graded structural shell panel under the combined thermomechanical loading. The nanotube sandwich structural model is derived mathematically using the higher-order displacement polynomial including the full geometrical nonlinear strain-displacement equations via Green-Lagrange relations. The face sheets of the sandwich panel are assumed to be carbon nanotube-reinforced polymer composite with temperature dependent material properties. Additionally, the numerical model included different types of nanotube distribution patterns for the sandwich face sheets for the sake of variable strength. The required equilibrium equation of the graded carbon nanotube sandwich structural panel is derived by minimizing the total potential energy expression. The energy expression is further solved to obtain the deflection values (linear and nonlinear) via the direct iterative method in conjunction with finite element steps. A computer code is prepared (MATLAB environment) based on the current higher-order nonlinear model for the numerical analysis purpose. The stability of the numerical solution and the validity are verified by comparing the published deflection and stress values. Finally, the nonlinear model is utilized to explore the deflection and the stresses of the nanotube-reinforced (volume fraction and distribution patterns of carbon nanotube) sandwich structure (different core to face thickness ratios) for the variable type of structural parameter (thickness ratio, aspect ratio, geometrical configurations, constraints at the edges and curvature ratio) and unlike temperature loading.