• Title/Summary/Keyword: face stability

Search Result 435, Processing Time 0.028 seconds

ORTHOPEDIC AND SURGICO-ORTHODONTIC TREATMENT IN THE LONG FACE (Long Face(open-bite) 환자의 수술 교정 치료)

  • Baik, Hyoung Seon
    • The korean journal of orthodontics
    • /
    • v.19 no.3
    • /
    • pp.147-160
    • /
    • 1989
  • Long face patients are characterized by excessive anterior facial height, lip incompetence at rest, anterior open bite, and gummy smile. A major problem is an inferior rotation of the posterior maxilla and upper molars. Long face patients have been the most difficult for orthodontist to treat successfully. In growing patients, the methods for impeding excessive vertical growth have been used high pull head gear, functional appliance, and combined type of two. One significant improvement comes from using a full arch splint to deliver force to the maxilla more vertically. In adult patients, orthodontic camouflage treatment is biomechanically difficult and doesn't work when the problem is primarilly vertical. Surgical maxillary impaction provides a means for successfully treating most of problems. Also, superior reposition of the chin via a mandibular inferior border osteotomy is effective in decrease of lower anterior facial height and correction of the poor chin-lip balance. Post-surgical stability and the physiologic response are good. The coordinated orthodontic and surgical treatment is necessary for solution the difficult skeletal deformity.

  • PDF

Effect of a Frontal Impermeable Layer on the Excess Slurry Pressure during the Shield Tunnelling (전방 차수층이 쉴드터널 초과 이수압에 미치는 영향)

  • Lee, Yong-Jun;Lee, Sang-Duk
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1199-1213
    • /
    • 2011
  • Slurry type shield would be very effective for the tunnelling in a sandy ground, but low slurry pressure could cause a tunnel face failure or a ground settlement in front of the tunnel face. Thus, the stability of tunnel face could be maintained by applying an excess slurry pressure that is larger than the active earth pressure. However, the slurry pressure should increase properly because an excessively high slurry pressure could cause the slurry flow out or the passive failure of the frontal ground. It is possible to apply the high slurry pressure without passive failure if a horizontal impermeable layer is located in the ground in front of the tunnel face, but its location, size, and effects are not clearly known yet. In this research, two-dimensional model tests were carried out in order to find out the effect of a horizontal impermeable layer for the slurry shield tunnelling in a saturated sandy ground. As results, larger slurry pressure could be applied to increase the stability of the tunnel face when the impermeable layer was located in the ground above the crown in front of the tunnel face. The most effective length of the impermeable grouting layer was 1.0~1.5D, and the location was 1.0D above the crown level. The safety factor could be suggested as the ratio of the maximum slurry pressure to the active earth pressure at the tunnel face. It could also be suggested that the slurry pressure in the magnitude of 3.5~4.0 times larger than the active earth pressure at the initial tunnel face could be applied if the impermeable layer was constructed at the optimal location.

  • PDF

The Effect of Seepage Forces on the Tunnel Face Stability (침투력이 터널 막장의 안정성에 미치는 영향에 관한 연구)

  • 이인모;남석우;안재훈
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.5
    • /
    • pp.165-172
    • /
    • 2001
  • 본 연구에서는 하천인접구간에서와 같이 지하수가 풍부한 지반에서 시공되는 터널의 막장 안정성을 평가하기 위하여 터널 막장에 작용하는 힘의 두 가지 요소를 고려하였다. 하나는 극한해석 중 upper bound solution으로부터 산출된 유효응력이며, 또 하나는 지하수의 정상류 흐름조건을 고려한 수치해석으로부터 산출된 침투력이다. 지하수가 풍부한 토사지반에서의 터널 시공시 터널 막장에 작용하는 힘을 구하기 위하여 침투력을 고려한 극한해석의 해를 구한 결과 터널 막장의 안정성을 유지하기 위한 최소 지보력은 터널 막장에 작용하는 유효응력과 침투력의 합으로 나타낼 수 있었다. 또한 터널 막장에 작용하는 평균침투압은 지하수위에 비례하여 작용하는 것으로 나타났으며, 이를 실내모형 실험 결과를 통하여 검증하였다. 지하수의 정상류 조건 하에서의 토사터널에 대한 실내모형 실험 결과, 터널 막장에 작용하는 침투력은 수치해석 결과 비슷한 양상을 보여주어 제안된 이론의 타당성을 입증하였다.

  • PDF

Case Study of Slope Investigation on the Cretaceous Sedimentary Rocks Using the Geological Cross-Sections

  • Ihm, Myeong-Hyeok;Kim, Woo-Seok;Kwon, Oil
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.463-478
    • /
    • 2021
  • The subjects of the study are the sedimentary rock slope of the Mesozoic Gyeongsang Supergroup, which has a high risk of failure. The orientation of the slope-face represents a variety of changing characteristics. The rocks of the slope shall be sandstone, siltstone and dacite, and discontinuities shall develop beddings, shear joints, extension joints, and dacite dyke boundary planes. The type and scale of failure varies depending on the type of rock and the strike/dip of the discontinuities, but the toppling failure prevails. Based on the face-mapping data, SMR, physical and mechanical testing of rocks, analysis and review of the stereonet projections and the critical equilibrium analysis, all four representative sections required a countermeasure method because the acceptable safety factor during dry and rainy seasons were far below Fs = 1.5 and Fs = 1.2. After applying the countermeasure method, both the dry and wet conditions of the slope exceeded the allowable safety factor. In particular, the face-mapping data of the slope-face, the geological cross-sections of several representative sections perpendicular to the slope-face, and the critical equilibrium analysis and the presentation of countermeasure methods that have been reviewed based on them are expected to be reasonable tools for the slope stability. In addition, it will be possible to use it as basic data for performance evaluation for slope maintenance.

Designing and Implementing 3D Virtual Face Aesthetic Surgery System Based on Korean Standard Facial Data (한국 표준 얼굴 데이터를 적용한 3D 가상 얼굴 성형 제작 시스템 설계 및 구현)

  • Lee, Cheol-Woong;Kim, II-Min;Cho, Sae-Hong
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.5
    • /
    • pp.737-744
    • /
    • 2009
  • This paper is to study and implement 3D Virtual Face Aesthetic Surgery System which provides more satisfaction by comparing the before-and-after plastic face surgery using 3D face model. For this study, we implemented 3D Face Model Generating System which resembles 2D image of the user based on 3D Korean standard face model and user's 2D pictures. The proposed 3D Virtual Face Aesthetic Surgery System in this paper consists of 3D Face Model Generating System, 3D Skin Texture Mapping System, and Detailed Adjustment System for reflecting the detailed description of face. The proposed system provides more satisfaction to the medical uses and stability in the surgery in compare with other existing systems.

  • PDF

A numerical study on the safety of tunnel face using face bolting method (페이스 볼트 공법을 이용한 터널 막장 안정성에 관한 수치해석적 연구)

  • Ra, Jee-Hyun;Yoon, Ji-Sun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.83-89
    • /
    • 2007
  • As tunnel excavation generats stress release, a stability security of tunnel face is mainly important in case of tunnel excavation in the weak grounds. Using the steel bar or glass fiber pipe which had regular hardness, a face bolt method to reinforce previously is applied to an excavation object tunnel face aspect among measures methods regarding this. Therefore, used $FLAC^{3D}$ Ver. 2.1 on 5 Case of 0.5D (2EA), 1.0D, 1.5D, 2.0D with the length and 6 Case of 0, 20, 40, 60, 80, 100EA with the number of the bolt that a face bolt method was installed at these papers in the necessary weak grounds in order to review applicability of the tunnel face reinforcement method that used these face bolts, and executed three dimension continuous analysis.

  • PDF

A Study on the Closure Ratio for Tunnel Face Stabilization during Tunnel Excavation in Sand Soil (사질토지반에서 터널굴착시 막장안정을 위한 폐합비에 관한 연구)

  • Kim, Sang-Hwan;Kim, Ji-Tae;Lim, Chae-Ho;Lee, In-Keun
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.79-89
    • /
    • 2012
  • This paper presents experimental and numerical studies on the closure ratio of tunnel face to reduce pressure and displacement occurring at tunnel face during tunnel excavation. In experimental study, model tests are carried out according to the closure ratio of tunnel face and tunnel depth. Model test results are analyzed and interpreted by numerical calculation in order to verify results obtained from experimental and numerical studies. It is clearly found that tunnel face stability increases with the increase of the closure ratio of tunnel face. The results also show that tunnel face is stable when the closure ratio of tunnel face is larger than 80%. This research will be very useful to develop the economical tunnel face closing system.

Development of Tracking Equipment for Real­Time Multiple Face Detection (실시간 복합 얼굴 검출을 위한 추적 장치 개발)

  • 나상동;송선희;나하선;김천석;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1823-1830
    • /
    • 2003
  • This paper presents a multiple face detector based on a robust pupil detection technique. The pupil detector uses active illumination that exploits the retro­reflectivity property of eyes to facilitate detection. The detection range of this method is appropriate for interactive desktop and kiosk applications. Once the location of the pupil candidates are computed, the candidates are filtered and grouped into pairs that correspond to faces using heuristic rules. To demonstrate the robustness of the face detection technique, a dual mode face tracker was developed, which is initialized with the most salient detected face. Recursive estimators are used to guarantee the stability of the process and combine the measurements from the multi­face detector and a feature correlation tracker. The estimated position of the face is used to control a pan­tilt servo mechanism in real­time, that moves the camera to keep the tracked face always centered in the image.

A study on stresses and displacements of the ground according to the closure ratio of tunnel face during tunnel excavation (터널 막장폐합비에 따른 지반 응력 및 침하량에 대한 연구)

  • Kim, Sang-Hwan;Min, Byeong-Heon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.5
    • /
    • pp.369-378
    • /
    • 2010
  • This paper presents a new approach of closing the tunnel face with sprayed concrete to reduce the stress at the tunnel face and displacement occurring at the ground surface during tunnel excavation. In order to carry out this research, the experimental and numerical studies are performed. In the experimental study, the model tests are carried out according to the closure ratio of tunnel face, tunnel depth and tunnel excavation length. The model test results are analyzed and interpreted by numerical calculation in order to verify both results obtained from experimental and numerical studies. It is clearly found that the tunnel face stability is decreased in decreasing the closure ratio of tunnel face. The results also show that the tunnel face is stable when the closure ratio of tunnel face is larger than 80%. This research will be very useful to develop the economical tunnel face closing system.

Pseudo seismic and static stability analysis of the Torul Dam

  • Karabulut, Muhammet;Genis, Melih
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.207-214
    • /
    • 2019
  • Dams have a great importance on energy and irrigation. Dams must be evaluated statically and dynamically even after construction. For this purpose, Torul dam built between years 2000 and 2007 Harsit River in Gümüşhane province, Turkey, is selected as an application. The Torul dam has 137 m height and 322 GWh annual energy production capacity. Torul dam is a kind of concrete face rock fill dam (CFRD). In this study, static and pseudo seismic stability of Torul dam was investigated using finite element method. Torul dam model is constituted by numerical stress analysis named Phase2 which is based on finite element method. The dam was examined under 11 different water filling levels. Thirteenth stage of the numerical model is corresponding full reservoir condition which water filled up under crest line. Besides, pseudo static coefficients for dynamic condition applied to the dam in fourteenth stage of the model. Stability assessment of the Torul dam has been discussed according to the displacement throughout the dam body. For static and pseudo seismic cases, the displacements in the dam body have been compared. The total displacements of the dam according to its the empty state increase dramatically at the height of the water level of about 70 m and above. Compared to the pseudo-seismic analysis, the displacement of dam at the full reservoir condition is approximately two times as high as static analysis.