• Title/Summary/Keyword: face stability

Search Result 434, Processing Time 0.025 seconds

Infiltration characteristic of modified slurry and support efficiency of filter cake in silty sand strata

  • Sai Zhang;Jianwen Ding;Ning Jiao;Shuai Sun;Jinyu Liu
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.125-138
    • /
    • 2023
  • To improve the understanding of infiltration characteristic of modified slurry and the support efficiency of filter cake in silty sand strata, the slurry infiltration (SI) and filter cake formation (FCF) were investigated in a laboratory apparatus. The water discharge and the excess pore pressure at different depths of silty sand strata were measured during SI. The relationship between permeability coefficient/thickness ratio of filter cake (kc/ΔL) and effective slurry pressure conversion rate of filter cake (η) were analyzed. Moreover, the SI and FCF process as well as the modification mechanism of CMC (carboxymethyl cellulose) were clarified. The experimental results indicate the formation of only external filter cake in the silty sand strata. The slurry particles obtain thicker water membrane after being modified by CMC, which blocks partial water path in filter cake and decreases the water discharge significantly. The silty sand excavated from tunnel face also contributes to the water discharge reduction. The kc of the external filter cake ranges from 3.83×10-8 cm/s to 7.44×10-8 cm/s. The η of the external filter cake is over 96%, which decreases with increasing kc/ΔL. A silty sand content within 10% is suggested during construction to ensure the uniformity of the filter cake.

Plate and Screw Removal after Orthognathic Surgery, under Intravenous Sedation with Dexmedetomidine and Pethidine (Dexmedetomidine과 Pethidine을 이용한 정맥내 진정하에 시행된 악교정수술 후 금속나사제거)

  • Kang, Hee-Jea;Kim, Jong-Ryoul;Kim, Si-Yeob;Choi, Tea-Sung;Chang, Kwang-Uk
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.4
    • /
    • pp.260-266
    • /
    • 2012
  • Purpose: The purpose of this study is to identify the changes of a physiologic nature and the sedative parameters associated with dexmedetomidine and pethidine, in patients undergoing plate and screw removal surgery, after orthognathic surgery. Methods: Twenty-three patients were sedated with dexmedetomidine and pethidine during plate and screw removal, after orthognathic surgery. An initial loading dose of dexmedetomidine ($1.0{\mu}g/kg$ infused over 10 minutes) was followed by a maintenance dose ($1.0{\mu}g/kg/hr$). Systolic blood pressure, diastolic blood pressure, mean arterial pressure, oxygen saturation, and heart rate were monitored. Perioperative amnesia and anxiety were recorded. Results: Significant changes were found in the blood pressure and heart rate (Freidman test, P<0.05), but not in oxygen saturation (Freidman test, P>0.05). Amnesia during local injection was observed in eight patients (34.8%). Compared with the preoperative anxiety score, the intraoperative anxiety score was decreased. Conclusion: In this study, we found cardiovascular and respiratory stability in intravenous sedation using dexmedetomidine with pethidine, in plate and screw removal, after orthognathic surgery. Furthemore, intravenous sedation using dexmedetomidine with pethidine shows adequate analgesic and sedative effects.

Numerical simulation on mining effect influenced by a normal fault and its induced effect on rock burst

  • Jiang, Jin-Quan;Wang, Pu;Jiang, Li-Shuai;Zheng, Peng-Qiang;Feng, Fan
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.337-344
    • /
    • 2018
  • The study of the mining effect influenced by a normal fault has great significance concerning the prediction and prevention of fault rock burst. According to the occurrence condition of a normal fault, the stress evolution of the working face and fault plane, the movement characteristics of overlying strata, and the law of fault slipping when the working face advances from footwall to hanging wall are studied utilizing UDEC numerical simulation. Then the inducing-mechanism of fault rock burst is revealed. Results show that in pre-mining, the in situ stress distribution of two fault walls in the fault-affected zone is notably different. When the working face mines in the footwall, the abutment stress distributes in a "double peak" pattern. The ratio of shear stress to normal stress and the fault slipping have the obvious spatial and temporal characteristics because they vary gradually from the higher layer to the lower one orderly. The variation of roof subsidence is in S-shape which includes slow deformation, violent slipping, deformation induced by the hanging wall strata rotation, and movement stability. The simulation results are verified via several engineering cases of fault rock burst. Moreover, it can provide a reference for prevention and control of rock burst in a fault-affected zone under similar conditions.

Prediction of fault zone ahead of tunnel face using x-Rs control chart analysis for crown settlement (천단변위의 x-Rs 관리도 분석을 이용한 터널 막장 전방 단층대 예측)

  • Yun, Hyun-Seok;Seo, Yong-Seok;Kim, Kwang-Yeom
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.4
    • /
    • pp.361-372
    • /
    • 2014
  • A measurement of tunnel displacement plays an important role for stability analysis and prediction of possible fault zone ahead of tunnel face. In this study, we evaluated characteristics of tunnel behaviour due to the existence and orientation of fault zone based on 3-dimensional finite element numerical analysis. The crown settlement representing tunnel behaviour is acquired at 5 m away from tunnel face in combination with x-Rs control chart analysis based on statistics for trend line and L/C (longitudinal/crown displacement) ratio in order to propose risk management method for fault zone. As a result, x-Rs control chart analysis can enable to predict fault zone in terms of existence and orientation in tunnelling.

Case Study on the Tunnel Collapse at the Shallow Depth (NATM터널 저토피 구간에서의 막장붕락 사례연구)

  • Baek Ki-Hyun;Roh Jong-Ryun;Kim Yong-Il;Cho Sang-Kook;Hwang Nag-Youn
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.102-110
    • /
    • 2005
  • ○ ○ tunnel that is located at Iksan - Jangsu freeway ○ ○, has collapsed during construction at the valley with shallow depth. Although, the site investigations, such as TSP, drilling exploration and so of indicated the presence of discontinuities in this section. The RMR was upgraded and the construction were carried out because that not only actual rock qualities were relatively good during construction but also the tunnel foe was stabilized. However, the tunnel was collapsed at the same time blasting of full face, and surface and underground water was infiltrated due to the settlement of the upper part of the tunnel face. To restore the collapsed section, 3-d tunnel stability analysis was performed and suitable reinforcement methods were chosen. The cavity of the upper tunnel face was stabilized by means of UAM and ALC injection. And the settlement was restored using L.W grouting method.

Drainage Control and Prediction of Slope Stability by GIS-based Hydrological Modeling at the Large Scale Open Pit Mine (GIS에 의한 대규모 노천광에서의 배수처리 및 사면안정 예측)

  • SunWoo, Choon;Choi, Yo-Soon;Park, Hyeong-Dong;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.360-371
    • /
    • 2007
  • This paper presents an application of drainage control and slope stability by GIS-based hydrological modeling to control the surface water from an operational point of view. This study was carried out on a region of Pasir open-pit coal mine, Indonesia. A detailed topographical survey was performed at the study area to generate a reliable DEM (Digital Elevation Model). Hydrology tools implemented in ArcGIS 9.1 were used to extract the characteristics of drainage system such as flow direction, flow accumulation and catchment area from DEM. The results of hydrological modeling and spatial analysis showed that current arrangement of pumping facility is not suitable and some vulnerable places to erosion exist on the bench face due to concentrated surface runoff. Finally, some practical measures were suggested to optimize the design of drainage system and to monitor the slope stability by the surface water management at the study region during heavy rainfall.

Linear Stability Analysis of a Baffled Rocket Combustor (배플이 장착된 로켓 연소기의 선형 안정성 해석)

  • Lee, Soo Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.46-52
    • /
    • 2018
  • A simple Crocco's $n-{\tau}$ time delay model and linear analysis of fluid flow coupled with acoustics are combined to investigate the high frequency combustion instability in the combustion chamber of LOX/hydrocarbon engines. The partial differential equation of the velocity potential is separated into ordinary differential equations, and eigenvalues that correspond to tangential resonance modes in the cylindrical chamber are determined. A general solution is obtained by solving the differential equation in the axial direction, and boundary conditions at the injector face and nozzle entrance are applied in order to calculate the chamber admittance. Frequency analysis of the transfer function is used to evaluate the stability of system. Stability margin is determined from the system gain and phase angle for the desired frequency range of 1T mode. The chamber model with variable baffle length and configurations are also considered in order to enhance the 1T mode stability of the combustion chamber.

Unstable Behavior and Critical Buckling Load of a Single-Layer Dome using the Timber Elements (목재를 이용한 단층 지오데식 돔의 불안정 거동과 임계좌굴하중)

  • Hong, Seok-Ho;Ha, Hyeonju;Shon, Sudeok;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.2
    • /
    • pp.19-28
    • /
    • 2023
  • Timber structures are susceptible to moisture, contamination, and pest infestation, which can compromise their integrity and pose a significant fire hazard. Despite these drawbacks, timber's lightweight properties, eco-friendliness, and alignment with current architectural trends emphasizing sustainability make it an attractive option for construction. Moreover, timber structures offer economic benefits and provide a natural aesthetic that regulates building temperature and humidity. In recent years, timber domes have gained popularity due to their high recyclability, lightness, and improved fire resistance. Researchers are exploring hybrid timber and steel domes to enhance stability and rigidity. However, shallow dome structures still face challenges related to structural instability. This study investigates stability problems associated with timber domes, the behavior of timber and steel hybrid domes, and the impact of timber member positioning on dome stability and critical load levels. The paper analyzes unstable buckling in single-layer lattice domes using an incremental analysis method. The critical buckling load of the domes is examined based on the arrangement of timber members in the inclined and horizontal directions. The analysis shows that nodal snapping is observed in the case of a concentrated load, whereas snap-back is also observed in the case of a uniform load. Furthermore, the use of inclined timber and horizontal steel members in the lattice dome design provides adequate stability.

Kinematic Analysis of Plane Failure for Rock Slope Using GIS and Probabilistic Analysis Method (GIS와 확률론적 해석 기법을 기반으로 한 평면파괴의 운동학적 안정성 해석)

  • Lee, Seok Hwan;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.47 no.2
    • /
    • pp.121-131
    • /
    • 2014
  • The stability of rock slope is mainly controlled by the orientation and shear strength of discontinuties in rock mass. Therefore, in kinematic analysis, the orientation of the combination of discontinuities and slope face is examined to determine if certain modes of failure can be occurred. In previous kinematic analysis, a representative orientation of the slope face and mean orientation of discontinuity set were used as input parameters. However, since the orientations of slope face varies according to locations of measurement, the representative slope face orientation could cause misunderstanding for kinematic instability. In addition, since the orientations of each discontinuity are scattered in the same discontinuity set, there is the possibility that uncertainties are involved in the procedure of kinematic analysis. Therefore, in this study, the detailed digital topographic map was used to obtain the orientation of slope face. In addition, the probabilistic analysis approach was utilized to deal properly with the uncertainties in discontinuity orientation. The proposed approach was applied to steep slopes in mountain road located in Baehuryeong, Chunncheon city, Gangwon-Do. The analysis results obtained from the deterministic and probabilistic analysis were compared to check the feasibility of proposed the analysis.

A FLUOROSCOPIC STUDY ON THE STABILITY OF SKIN REFERENCE POINTS DURING JAW OPENING AND CLOSING MOVEMENT (방사선 투시를 이용한 개폐구 운동에 따른 수직 고경 계측점의 안정성에 관한 연구)

  • Ahn, Hyung-Jun;Kim, Chang-Whe;Kim, Yung-Soo;Kim, Yong-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.4
    • /
    • pp.516-530
    • /
    • 1999
  • The current clinical technique for occlusal vertical dimension recording is based on marking the skin reference points on the patient's face and measuring between these points using caliper-like device. And it is difficult to achieve reliable measurements by this technique because of movable soft tissue. The purpose of this study is to reveal the stability of skin reference points by comparing the relative movement between extra-oral skin reference points and intra-oral reference points using X-ray fluoroscope. 10 test subjects were divided into 2 groups : Group I (natural dentition) and Group II (denture-wearer whose vertical dimension was lost) and Group III consists of identical test subjects to Group II with their upper denture removed and record base inserted. Attaching the 3 mm diameter steel ball to nose tip, lower lip, chin and to existing denture (or record base), fluoroscopic examination and recording were taken during 2 jaw opening and closing movements. After subsequent digitization using personal computer, 1219 still pictures with 0.1 second interval were made. Using the 2 dimensional graphic software, measurements between reference points were executed. Dividing the entire jaw movement into 3 ranges (total, 1st half opening, 2nd half opening), rate of movement and relative movement between extra-oral and intra-oral reference points were calculated and statistically analyzed. The results of this study are as follows. 1 Within the same experimental group, no statistical difference was found in the stability of skin reference between lower lip point and chin point during total range of jaw opening and closing movement (p>.05) 2. In the first half range of jaw opening, statistical difference was found between Group I (natural dentition) and Group II (denture wearer) (p<.05) Group I has greater skin reference stability than Group II. 3. In the first half range of jaw opening, statistical difference was found between Group I and Group III (record base wearer) (p<.05). Group I has greater skin reference stability than Group III. 4. In the first half range of jaw opening, no statistical difference was found in the stability of skin reference between Group II and Group III (p>.05). 5. In the second half range of jaw opening, no statistical difference was found in the stability of skin reference between any experimental groups (p>.05). 6. In patients with their occlusal vertical dimension lost, employing other measuring references rather than skin is recommended because of low stability.

  • PDF