• Title/Summary/Keyword: face pressure

Search Result 504, Processing Time 0.034 seconds

Seepage-induced Face Stability of n Tunnel with Steel Pipe-reinforced Multistep Grouting (강관 다단 그라우팅으로 보강된 터널의 침투수력을 고려한 막장 안정성 검토)

  • 이인모;이재성;남석우;이형주
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.121-131
    • /
    • 2003
  • Tunneling in difficult geological conditions is often inevitable especially in urban areas. Ground improvement and reinforcement techniques are often required to guarantee safe tunnel excavations and/or to prevent damage to adjacent structures. The steel pipe-reinforced multistep grouting method has been recently applied to tunnel sites in Korea as an auxiliary technique. In this study, the face stability with steel pipe-reinforced multistep grouting was evaluated emphasizing the effect of seepage forces. The study revealed that the influence of the steel pipe-reinforced multistep grouting on the support pressure in dry condition is not significant while there is relatively a large amount of reduction in seepage forces by adopting the technique in saturated condition. The effect of the anisotropy of permeability on the seepage force acting on the tunnel face was also estimated by conducting the coupled analysis. It was found that a higher horizontal permeability compared with the vertical one causes reduction in the seepage farce acting on the tunnel face.

Numerical Study of Face Plate-Type EPB Shield TBM by Discrete Element Method (개별요소법을 활용한 면판형 토압식 쉴드TBM의 수치해석 연구)

  • Lee, Chulho;Chang, Soo-Ho;Choi, Soon-Wook;Park, Byungkwan;Kang, Tae-Ho;Sim, Jung Kil
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.163-176
    • /
    • 2017
  • The Discrete Element Method (DEM) has been widely used in civil engineering as well as various industrial fields to simulate granular materials. In this study, DEM was adopted to predict the performance of the face plate-type earth pressure balance (EPB) shield TBM (Tunnel Boring Machine). An analysis of the TBM excavation performance was conducted according to two pre-defined excavation conditions with the different rotation speeds per minute (RPM) of the cutterhead. The TBM model which was used in this study has a 6.64 m of diameter and six spokes. Also, 37 precutters and 98 scrapers at an each spoke were modeled with a real-scale specification. From the analysis, compressive forces at the cutterhead face, shield and cutting tools, resistant torques at the cutterhead face, muck discharge rate and accumulated muck discharge by the screw auger were measured and compared.

Infiltration behavior and face stability of carbonate-added slurry shield tunnel (탄산을 첨가한 슬러리 쉴드 터널에서의 침투 거동 및 굴진면 안정성 평가)

  • Lee, Ik-Bum;Choi, Ki-Hoon;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.4
    • /
    • pp.401-413
    • /
    • 2013
  • Slurry shield tunnelling ensures stability by pressurizing the tunnel face with the slurry contained in the chamber. It resists water and earth pressure in order to prevent the failure in the tunnel face during tunnel excavation. If the ground is relatively coarse, slurry can not clog the tunnel face and excessive slurry infiltration will occur. In this case chemical compounds or additives should be added to the slurry in order to improve the clogging phenomena at the tunnel face. In this study, the effect of the carbon dioxide gas as an additive to the slurry instead of chemical compounds on the capability of enhancing the clogging in the tunnel face is investigated. Bubbles arising from the carbonate-added slurry are trapped in the soil voids enhancing the clogging capability. This effect is studied in this paper by performing laboratory model tests simulating in-situ conditions, and by adopting the fine particle clogging theory. Tunnel face stability analysis was also performed and it was found that the effective size ($D_{10}$) of soils which can guarantee tunnel stability utilizing the carbonate-added slurry increased from 1.0 mm up to 2.6 mm. Moreover, Stability analysis showed that the tunnel face is stable if the ${\lambda}$(deposition coefficient) value is greater than $0.007sec^{-1}$.

Elastohydrodynamic Lubrication Analysis on the Contacting Surfaces between Spur Gear Teeth (스퍼 기어 치면 사이의 탄성유체 윤활해석)

  • Kim, Hyung-Ja;Kim, Young-Dae;Koo, Young-Pil
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.200-206
    • /
    • 2002
  • Pressure and film thickness of contacting surfaces between teeth of the involute spur gear in lubricated condition were studied by a numerical method. Dynamics of the gear and pinion was considered to gel ail accurate initial clearance between gear teeth. The 3-dimensional non-steady elastohydrodanamic lubrication analysis on the gear teeth showed a slight higher pressure at the inlet region of the contacting face as well as pressure spike at the outlet region and a more thick film thickness than that of steady condition.

  • PDF

정면 밀링의 절삭력 해석을 위한 평균 비절삭저항 모델의 개발

  • 이병철;황정철;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.28-33
    • /
    • 1992
  • The paper describes a new mean specific cutting pressure model in order to improve the accuracy of prediction of cutting force for face milling. The new mean specific cutting pressure model produces a mean specific cutting pressure and coefficients applied to existing cutting model not by traditional method but by considering intermittence and variation of chip width according to insert cutting position to take into cutter geometry machining condition and width of workpiece, and considering a mean measure force according to spindle eccentricity and mean measure force according to spindle eccentricity and insert initial position errors.. The simulated forces in X, Y, Z directions resulted from the simulated cutting model and the new cutting model are compared with measured forces in the time end frequency domains. The simulated forces in the time and frequency domains. The simulated forces resulted from the new cutting model have a good degreement with measured forces in comparison with these resulted from the existing cutting model

Surgical Treatment of Supravalvular Aortic Stenosis (대동맥 판상부 협착증의 수술요법)

  • 유재현;유환국;이원용;나찬영;정윤섭;김응수;백완기;한재진;이영탁
    • Journal of Chest Surgery
    • /
    • v.26 no.2
    • /
    • pp.135-140
    • /
    • 1993
  • Supravalvular aortic stenosis is an uncommon, congenital narrowing of ascending aorta just above aortic valve. Eleven patients underwent an aortoplasty to relieve supravalvular aortic stenosis at Sejong General Hospital from July 1985 to December 1991. Age ranged from 5 to 14 years(median 9 years). There were 7 male and 4 female patients. Seven patients had characteristics of Williams' syndrome including elfin face and mental retardation. All patients had localized, hourglass type but 4 patients had atypical findings. Preoperative left ventricula-aortic pressure gradient ranged from 40 to 190 mmHg(mean 88 mmHg). To relieve severe supravalvular aortic stenosis, extended aortoplasty was used in 7 patients and standard aortoplasty in 4 patients. Postoperative pressure gradient ranged from 0 to 40 mmHg (mean 16.6 mmHg). Follow-up pressure gradient with Doppler ranged from 0 to 88mmHg(mean 32.5mmHg).

  • PDF

Performance Comparison of a Fabric Filter System with Centrifugal Force and a Conventional Fabric Filter System (원심력이 적용된 여과포집진장치와 기존 집진장치의 성능비교)

  • Kim Sang-Do;Park Young-Ok;Kang Yong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.6
    • /
    • pp.739-748
    • /
    • 2004
  • A hybrid dust-collector combining a fabric filter with centrifugal force was developed to enhance the performance of the conventional fabric filter systems and its performances were evaluated to compare to that of the existing dust collector. The pressure drop rapidly increased with increasing the elapsed time and the face velocity in two filtration systems. But the increasing ratio of a hybrid dust-collector compare to the existing dust collector was lower. This results were confirmed from the performance such as cleaning interval, residual pressure drop and dust loading rate. The overall collection efficiency of the hybrid dust-collector was more than 99.6% and this showed a improvement of 0.6~2% than that of the existing dust collector. Especially, the fractional collection efficiency at the particle size of around 1${\mu}{\textrm}{m}$ is about 4% higher than that of the existing dust collector.

The Operational Time pressure and TEM (운항시간 압력 및 Threat과 Error 관리)

  • Choe, Jin-Guk;An, Gyeong-Su;Jeong, Won-Gyeong;Kim, Chil-Yeong
    • 한국항공운항학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.61-65
    • /
    • 2006
  • The flight deck crew are under the operational time pressure in the cockpit. The crew tend to make errors when they face the threats of operational time pressure because they are in a rush. The flight deck crew can reduce threats and errors which existing within the airlines by using threat and error management when the crew know these threats and errors. The airlines can implement meaningful safety management system by analyzing into the useful information for to identify the hazard and manage the risk to reduce these threats and errors since aircrafts accidents can be fatal.With the threats and errors that were found regard to operational time pressures, company may implements safety change process to improve the safety systematically and the crew can manage the threats and errors more effectively.

  • PDF

서브모델링과 응력선형화를 이용한 압력용기의 안전성 평가

  • Choe, Jae-Hun;Kim, Jun-Yeong
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.234-238
    • /
    • 2015
  • When we use a Finite Elements Method (FEM) to solve a linear static analysis problem, number of elements need to be sufficiently small for convergence of the solution. If we analysis a part, whose curvature is varying heavily, we face to determine how small the elements size is, because the calculated stress is increased as the elements are smaller. In this case, we need to analysis with mesh insensitive method, stress linearization. We can get a solution that is not varying with the elements size if the size is smaller than a certain level. In this paper, we evaluate a pressure vessel having geometrical discontinuities using stress linearization. First, we analysis the vessel with global model, including all part of the vessel, using large shell elements. Second, we analysis the local part of the vessel, which is the small part occurring maximum stress, using small continuum elements. Last, we evaluate the safety of the pressure vessel according to the ASME Sec. VIII Div 2.

  • PDF

Active earth pressure behind rigid retaining wall rotating about the top (정점을 중심으로 회전하는 강성옹벽에 작용하는 주동토압)

  • Paik Kyu-Ho;Sagong Myung
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1107-1112
    • /
    • 2004
  • For a rigid retaining wall with rough face, the practical shape of failure surface and arching effect in the backfill must be considered to acquire accurate magnitude and non-linear distribution of active earth pressure acting on the rigid retaining wall. In this study, a new formulation for calculating the active earth pressure on a rough rigid retaining wall rotating about the top is proposed considering the practical shape of non-linear failure surface and arching effects. Accuracy of the proposed equation is checked through comparisons of calculations from the proposed equations with existing model test results. The comparisons show that the proposed equations produce satisfactory results.

  • PDF