• 제목/요약/키워드: face load factor

검색결과 41건 처리시간 0.027초

Cuckoo Hashing을 이용한 RCC에 대한 성능향상 (Enhancing RCC(Recyclable Counter With Confinement) with Cuckoo Hashing)

  • 장룡호;정창훈;김근영;양대헌;이경희
    • 한국통신학회논문지
    • /
    • 제41권6호
    • /
    • pp.663-671
    • /
    • 2016
  • 인터넷 트래픽양의 급증에 따라 고속 라우터의 수요가 많아졌다. 트래픽 통계 또는 보안 등의 목적으로 라우터에서 패킷을 측정해야 하는데 고속 라우터의 특성상 메모리공간이 제한적이다. RCC는 적은 메모리로 트래픽을 정확하고 효율적으로 측정하는 방법을 제시했다. RCC에서는 트래픽을 측정하는데 큰 Flow를 추가적인 Quadratic Probing 기반 해시 테이블에 누적하는 방법 사용한다. 그런데 Quadratic Probing은 적은 메모리 또는 메모리 사용률이 많은 상황에서 연산량이 많으며, 특히 갱신 또는 실시간 조회가 자주 발생하는 시스템에서 오버헤드가 크다. 이 논문에서는 RCC의 특성을 분석하고 실험을 통해 Quadratic Probing의 문제점을 증명하며 갱신 또는 조회에 효율적인 Cuckoo Hashing을 사용하여 RCC의 성능을 개선한다. 실험 결과에 따르면 RCC에서 Cuckoo Hashing을 사용할 때 메모리 사용률이 높은 상황에서도 높은 정확도를 보여주었고, 효율적으로 트래픽을 측정할 수 있었다.

Estimation for Primary Tunnel Lining Loads

  • 김학준
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1998년도 터널.암반역학위원회 박사학위 논문집
    • /
    • pp.153-204
    • /
    • 1998
  • Prediction of lining loads due to tunnelling is one of the major issues to be addressed in the design of a tunnel. The objective of this study is to investigate rational and realistic design loads on tunnel linings. factors influencing the lining load are summarized and discussed. The instruments for measuring the lining loads are reviewed and discussed because field measurements are often necessary to verify the design methods. Tunnel construction in the City of Edmonton has been very active for storm and sanitary purposes. Since the early 1970's, the city has also been developing an underground Light Rail Transit system. The load measurements obtained from these tunnels are compared with the results from the existing design methods. However, none of the existing methods are totally satisfactory, Therefore, there is some room for improvement in the prediction of lining loads. The convergence-confinement method is reviewed and applied to a case history of a tunnel in Edmonton. The convergence curves are obtained from 2-D finite element analyses using three different material models and theoretical equations. The limitation of the convergence-confinement method is discussed by comparing these curves with the field measurements. Three-dimensional finite element analyses are performed to gain a better understanding of stress and displacement behaviour near the tunnel face. An improved design method is proposed based on the review of existing design methods and the performance of numerical analyses. A specific method or combination of two different methods is suggested for the estimation of lining loads for different conditions of tunnelling. A method to determine the stress reduction factor is described. Typical values of dimensionless load factors nD/H for tunnels in Edmonton are obtained from parametric analyses. Finally, the loads calculated using the proposed method are compared with field measurements collected from various tunnels in terms of soil types and construction methods to verify the method. The proposed method gives a reasonable approximation of the lining loads. The proposed method is recommended as an approximate guideline for the design of tunnels, but the results should be confirmed by field measurements due to the uncertainties of the ground and lining properties and the construction procedures, This is the reason that in-situ monitoring should be an integral part of the design procedure.

  • PDF

풍력 발전기용 증속기의 유연 핀이 수명에 미치는 영향 연구 (Influence of Flexible Pin for Planets on Service Life of Wind Turbine Gearboxes)

  • 박영준;이근호;남용윤;김정길
    • 대한기계학회논문집A
    • /
    • 제36권9호
    • /
    • pp.953-960
    • /
    • 2012
  • 풍력발전기용 증속기의 유성기어열에서 한단 지지 캐리어에 유연 핀을 적용하여 유성 축과 유연 핀의 변형에 의한 자기 정렬 효과가 증속기 유성기어열의 수명에 미치는 영향에 대한 연구를 수행하였다. 유성기어열의 하중 분배 효과를 분석하기 위하여 오일러 이론과 상용 프로그램을 이용하였다. 풍력발전기용 증속기에 한단 지지 캐리어와 유연 핀이 사용됨에 따라 유성기어의 미스얼라인먼트, 치면 하중분포 계수 및 요구수명이 만족할 만한 성능 향상을 가져왔으며, 특히 요구수명에 있어서 증속기가 요구하는 20년 보증 수명을 만족하는 것으로 확인되었다.

카복실레이트계 시멘트의 접착력에 관한 비교 연구 (COMPARATIVE STUDIES OF THE ADHESIVE QUALITIES OF POLYCARBOXYLATE CEMENTS)

  • 이한무
    • 대한치과보철학회지
    • /
    • 제17권1호
    • /
    • pp.23-34
    • /
    • 1979
  • In this study, the adhesive strength of three commercial polycarboxylate cements to ten types of dental casting alloys, such as gold, palladium, silver, indium, copper, nickel, chromium, and human enamel and dentine were measured and compared with that of a conventional zinc phosphate cement. The $8.0mm{\times}3.0mm$ cylindrical alloy specimens were made by casting. The enamel specimens were prepared from the labial surface of human upper incisor, and the dentine specimens were prepared from the occulusal surface of the human molar respectively. Sound extracted human teeth, which had been kept in a fresh condition since, extraction, were mounted in a wax box with a cold-curing acrylic resin to expose the flattened area. The mounted teeth were then placed in a Specimen Cutter (Technicut) and were cut down under a water spray, and then the flat area on the all specimens were ground by hand with 400 and 600 grit wet silicone carbide paper. Two such specimens were then cemented together face-to-face with freshly mixed cement, and moderate finger pressure was applied to squeeze the cement to a thin and uniform film. All cemented specimens were then kept in a thermostatic humidor cabinet regulated at $23{\pm}2^{\circ}C.$ and more than 95 per cent relative humidity and tested after 24 hours and 1 week. Link chain was attached to each alloy specimen to reduce the rigidity of the jig assembly, and then all the specimens were mounted in the grips of the Instron Universal Testing Machine, and a tensile load was delivered to the adhering surface at a cross head speed of 0.20 mm/min. The loads to which the specimens were subjected were recorded on a chart moving at 0.50 mm/min. The adhesive strength was determined by measuring the load when the specimen separated from the cement block and by dividing the load by the area. The test was performed in a room at $23{\pm}2^{\circ}C.$ and $50{\pm}10$ per cent relative humidity. A minimum of five specimens were tested each material and those which deviated more than 15 per cent from the mean were discarded and new specimens prepared. From the experiments, the following results were obtained. 1) It was found that the adhesive strength of the polycarboxylate cement to all alloys tested was considerably greater than that of the zinc phosphate cement. 2) The adhesive strength of the polycarboxylate cements was superior to the non precious alloys, such as the copper, indium, nickel and chromium alloys, but it was inferior to the precious gold, silver and palladium alloys. 3) Surface treatment of the alloy was found to be an important factor in achieving adhesion. It appears that a polycarboxylate cement will adhere better to a smooth surface than to a rough one. This contrasts with zinc phosphate cements, where a rough helps mechanical interlocking. 4) The adhesion of the polycarboxylate cement with enamel was found superior to its adhesion with dentine.

  • PDF

Design Improvement of Mechanical Transmission for Tracked Small Agricultural Transporters through Gear Strength Analysis

  • Kim, Hong-Gon;Jo, Yeon-Ju;Kim, Chul-Soo;Han, Yong-Ho;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • 제41권1호
    • /
    • pp.1-11
    • /
    • 2016
  • Purpose: The gear strength of a new mechanical transmission designed to increase the loading weight of small 4.8 kW tracked agricultural transporters was analyzed. Design improvements to increase the gear strength and reduce the gear weight were proposed after examining the parameters. Methods: Sixteen operators from three regions were surveyed to obtain the usage profile of small 4.8 kW transporters. Gear strength was evaluated by calculating contact stress and tooth root stress using commercial software following ISO 6336. Results: From the strength calculation for each gear pair, contact stress smaller than tooth root stresses were produced in all gear pairs. The safety factors in most cases exceeded 1.0, except in the case of gear pair II in group II. The design life of the transporter using gear pair II in group II was 42% under harsh conditions-thus, this design life needs improvement. A robust design was proposed by examining the relevant parameters (face width and profile shift coefficient) to increase the design life of the transporter. In addition, a lightweight design for gear pair I in group II that was considered overdesigned was proposed by examining the face width to reduce the weight of the drive gear by 42% and that of the driven gear by 30%. Conclusions: The Safety factor for the design life was examined through a gear strength analysis. After examining the relevant parameters, conditions for strength improvement were proposed to increase design life or adjust overdesigned gear. However, load conditions differ depending on the working conditions or user's preferences; therefore, it is necessary to conduct further studies in various regions.

7075-T651 AI 합금에 있어서 물리적 미소 표면 피로균열 성장거동에 관한 연구 (A Study on Physically small Surface Fatigue Crack Growth Behavior in 7075-T651 Aluminum Alloy)

  • 신용승;서성원;유헌일
    • 한국정밀공학회지
    • /
    • 제9권1호
    • /
    • pp.106-117
    • /
    • 1992
  • In this study, the propagation behaviour and the closure phenomena of physically small surface cracks were investigated by the techinque of the Kikukawa-unloading elastic compliance method using a back face strain gage. The surface cracks initiated and propagated from notched specimens under constant amplitude bending load. The crack shape (aspect ratio) with approximately semi-circular at the early stage was changed to semi-elliptical as the cracks grew larger. The crack depth (a) could be expressed uniquenly by the crack length (c). The dependence of the crack propagation rate on the stress ratio R was strongly related in the lower ${\Delta}K$ range. The deceleration of the surface crack propagation rate was prominent in lower R during the crack length was small. When the propagation rate was rearranged with the effective stress intensity factor range ${\Delta}$K_{eff} the dependence of the crack propagation rate on the stress ratio R was found to be diminshed. These were caused by the crack closure phenomena that was most prominent at the lower propagation rate. The mechanism of crack closure phenomena was dominated by the plasticity-induced mechanism.

  • PDF

Analytical and finite element method for the bending analysis of the thick porous functionally graded sandwich plate including thickness stretching effect

  • Imad Benameur;Youcef Beldjelili;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • 제85권5호
    • /
    • pp.593-605
    • /
    • 2023
  • This work presents a comparison between analytical and finite element analysis for bending of porous sandwich functionally graded material (FGM) plates. The plate is rectangular and simply supported under static sinusoidal loading. Material properties of FGM are assumed to vary continuously across the face sheets thickness according to a power-law function in terms of the volume fractions of the constituents while the core is homogeneous. Four types of porosity are considered. A refined higher-order shear with normal deformation theory is used. The number of unknowns in this theory is five, as against six or more in other shear and normal deformation theories. This theory assumes the nonlinear variation of transverse shear stresses and satisfies its nullity in the top and bottom surfaces of the plate without the use of a shear correction factor. The governing equations of equilibrium are derived from the virtual work principle. The Navier approach is used to solve equilibrium equations. The constitutive law of the porous FGM sandwich plate is implemented for a 3D finite element through a subroutine in FORTRAN (UMAT) in Abaqus software. Results show good agreement between the finite element model and the analytical method for some results, but the analytical method keeps giving symmetric results even with the thickness stretching effect and load applied to the top surface of the sandwich.

대규모 지하굴착시 쐐기파괴로 인하여 발생하는 토압에 관한 연구 (A Study on the Rock Pressure Wedge Failure During Ground Excavation)

  • 이승호
    • 지질공학
    • /
    • 제11권1호
    • /
    • pp.1-11
    • /
    • 2001
  • 우리나라 지질의 특성은 토층의 두께가 얇아서 보통 10m이상만 굴착해도 암반층이 나타나므로 대규모 지하굴착 공사시 암반층에서의 토압분포 산정방법이 절실하게 요구되고 있는 실정이다. 그러나, 암반층 암압산정시 기존의 경험식인 Terzaghi-Peck, Tschebotarioff식 등을 그대로 적용하는 것은 암반층의 점착력을 대부분 무시하게 되므로 실제 강도를 과소 평가하게 된다. 따라서 암반에서의 절리경사각, 절리면 전단강도, 지반 상재하중등을 고려한 쐐기형 블럭(Wedge Block)의 수평활동력을 산정하는것이 실제 암반층 토류구조물에 작용하는 암압과 근접할 것으로 판단된다. 본 연구에서는 뒷채움 흙이 점착력을 갖는 흙인 경우 쐐기형상으로 파괴가 일어난다고 가정하여 Coulomb 토압이론을 확장하여 힘의 평형 조건을 이용해 Prakash-Saran(1963)이론과 절리면의 전단강도 결정공식 $\tau$=c+$\sigma$tan $\Phi$를 적용해서 암반층에 작용하는 암압을 산정하였다. 산정된 이론식을 이용하여 절리면 충전물의 상태 변화에 따른 절리면 전단 강도와 절리경사각을 바꿔가면서 해석해 본 결과, 암반층은 자체의 점착력과 내부마찰각이 크므로 절리방향과 경사각이 굴착면을 향해 어떻게 정해지느냐에 따라서 토압이 작용하기도 하고 작용하지 않을 수도 있다. 본 연구에서 산정된 이론식은 향후 절리면 전단강도 산정시 필요한 강도정수, 절리면의 방위와 상태, 과잉측압, 동적하중, 지진을 비롯한 많은 지반정수(Parameter)들을 보다 엄밀히 산정하고, 특히 암반층에 작용하는 지하수위 효과등을 고려하여, 실제 현장에서 계측된 많은 자료와의 분석을 통해 그 적용성이 검토되어야 할 것으로 판단된다.

  • PDF

보-기둥 접합부에 정착된 550 MPa 43 mm 갈고리철근의 거동 (Behavior of 550MPa 43mm Hooked Bars Embedded in Beam-Column Joints)

  • 배민서;천성철;김문길
    • 콘크리트학회논문집
    • /
    • 제28권5호
    • /
    • pp.611-620
    • /
    • 2016
  • 철근항복강도가 420 MPa만 사용되는 원자력발전소는 대구경 철근이 과밀 배근되어 정밀시공이 어렵고 콘크리트구조물의 품질저하가 우려된다. 과밀배근 해소를 위해 항복강도 550 MPa 철근의 사용이 필요하다. 이 연구에서는 550 MPa 고강도철근의 실용화를 위해 요구되는 여러 검토 항목 중, 철근과 콘크리트 일체 거동을 위해 필요한 43 mm 갈고리철근의 정착거동을 실험적으로 평가하였다. 실험체 모두 목표했던 측면파열파괴가 발생하여, 최대하중에서 측면 피복두께가 급격히 탈락하였다. 가력 초기에는 대부분의 하중을 직선구간의 부착에 의해 지지하였으나, 최대 하중의 1/3 지점부터 부착에 의한 기여도가 저감되기 시작하여 최대 하중에서는 대부분 갈고리 지압에 의해 하중을 지지하였다. 횡보강철근이 있는 실험체에서 [실험값]/[콘크리트구조기준 예측값] 비율의 평균이 1.45였다. 35 mm 초과 철근에 적용이 금지된 횡보강철근에 대한 보정계수 0.8을 적용하여도 안전한 갈고리 정착이 가능하다. 고강도콘크리트를 사용한 경우에는 [실험값]/[콘크리트구조기준 예측값]의 비율이 1.0로 다른 경우에 비해 안전율이 부족하였다. 콘크리트강도의 제곱근에 비례하는 콘크리트구조기준은 고강도 콘크리트에서 안전측이 아니므로 콘크리트 압축강도에 대한 영향을 저감시킬 필요가 있다. 실험결과를 회귀분석하여, 콘크리트 압축강도, 묻힘길이, 측면피복두께, 횡보강철근의 영향을 고려한 갈고리철근 정착강도 평가식을 개발하였다. 13개 실험데이터와 비교한 결과, [실험값]/[예측값] 비 평균이 1.0, 변동계수가 10%로 매우 정확히 강도를 예측하였다.

Optimization study on roof break direction of gob-side entry retaining by roof break and filling in thick-layer soft rock layer

  • Yang, Dang-Wei;Ma, Zhan-Guo;Qi, Fu-Zhou;Gong, Peng;Liu, Dao-Ping;Zhao, Guo-Zhen;Zhang, Ray Ruichong
    • Geomechanics and Engineering
    • /
    • 제13권2호
    • /
    • pp.195-215
    • /
    • 2017
  • This paper proposes gob-side entry retaining by roof break and filling in thick-layer soft rock conditions based on the thick-layer soft rock roof strata migration law and the demand for non-pillar gob-side entry retaining projects. The functional expressions of main roof subsidence are derived for three break roof direction conditions: lateral deflection toward the roadway, lateral deflection toward the gob and vertically to the roof. These are derived according to the load-bearing boundary conditions of the main roadway roof stratum. It is concluded that the break roof angle is an important factor influencing the stability of gob-side entry retaining surrounding rock. This paper studies the stress distribution characteristics and plastic damage scope of gob-side entry retaining integrated coal seams, as well as the roof strata migration law and the supporting stability of caving structure filled on the break roof layer at the break roof angles of $-5^{\circ}$, $0^{\circ}$, $5^{\circ}$, $10^{\circ}$ and $15^{\circ}$ are studied. The simulation results of numerical analysis indicate that, the stress concentration and plastic damage scope to the sides of gob-side entry retaining integrated coal at the break roof angle of $5^{\circ}$ are reduced and shearing stress concentration of the caving filling body has been eliminated. The disturbance of coal mining to the roadway roof and loss of carrying capacity are mitigated. Field tests have been carried out on air-return roadway 5203 with the break roof angle of $5^{\circ}$. The monitoring indicates that the break roof filling section and compaction section are located at 0-45 m and 45-75 m behind the working face, respectively. The section from 75-100 m tends to be stable.