• Title/Summary/Keyword: face image rotation

Search Result 62, Processing Time 0.031 seconds

Real-Time Rotation-Invariant Face Detection Using Combined Depth Estimation and Ellipse Fitting

  • Kim, Daehee;Lee, Seungwon;Kim, Dongmin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.2
    • /
    • pp.73-77
    • /
    • 2012
  • This paper reports a combined depth- and model-based face detection and tracking approach. The proposed algorithm consists of four functional modules; i) color-based candidate region extraction, ii) generation of the depth histogram for handling occlusion, iii) rotation-invariant face region detection using ellipse fitting, and iv) face tracking based on motion prediction. This technique solved the occlusion problem under complicated environment by detecting the face candidate region based on the depth-based histogram and skin colors. The angle of rotation was estimated by the ellipse fitting method in the detected candidate regions. The face region was finally determined by inversely rotating the candidate regions by the estimated angle using Haar-like features that were robustly trained robustly by the frontal face.

  • PDF

Face detection using haar-like feature and Tracking with Lucas-Kanade feature tracker (Haar-like feature를 이용한 얼굴 검출과 추적을 위한 Lucas-Kanade특징 추적)

  • Kim, Ki-Sang;Kim, Se-Hoon;Park, Gene-Yong;Choi, Hyung-Il
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.835-838
    • /
    • 2008
  • In this paper, we present automatic face detection and tracking which is robustness in rotation and translation. Detecting a face image, we used Haar-like feature, which is fast detect facial image. Also tracking, we applied Lucas-Kanade feature tracker and KLT algorithm, which has robustness for rotated facial image. In experiment result, we confirmed that face detection and tracking which is robustness in rotation and translation.

  • PDF

Rotation and Scale Invariant Face Detection Using Log-polar Mapping and Face Features (Log-polar변환과 얼굴특징추출을 이용한 크기 및 회전불변 얼굴인식)

  • Go Gi-Young;Kim Doo-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.1
    • /
    • pp.15-22
    • /
    • 2005
  • In this paper, we propose a face recognition system by using the CCD color image. We first get the face candidate image by using YCbCr color model and adaptive skin color information. And we use it initial curve of active contour model to extract face region. We use the Eye map and mouth map using color information for extracting facial feature from the face image. To obtain center point of Log-polar image, we use extracted facial feature from the face image. In order to obtain feature vectors, we use extracted coefficients from DCT and wavelet transform. To show the validity of the proposed method, we performed a face recognition using neural network with BP learning algorithm. Experimental results show that the proposed method is robuster with higher recogntion rate than the conventional method for the rotation and scale variant.

  • PDF

Face Recognition based on SURF Interest Point Extraction Algorithm (SURF 특징점 추출 알고리즘을 이용한 얼굴인식 연구)

  • Kang, Min-Ku;Choo, Won-Kook;Moon, Seung-Bin
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.3
    • /
    • pp.46-53
    • /
    • 2011
  • This paper proposes a SURF (Speeded Up Robust Features) based face recognition method which is one of typical interest point extraction algorithms. In general, SURF based object recognition is performed in interest point extraction and matching. In this paper, although, proposed method is employed not only in interest point extraction and matching, but also in face image rotation and interest point verification. image rotation is performed to increase the number of interest points and interest point verification is performed to find interest points which were matched correctly. Although proposed SURF based face recognition method requires more computation time than PCA based one, it shows better recognition rate than PCA algorithm. Through this experimental result, I confirmed that interest point extraction algorithm also can be adopted in face recognition.

A GAN-based face rotation technique using 3D face model for game characters (3D 얼굴 모델 기반의 GAN을 이용한 게임 캐릭터 회전 기법)

  • Kim, Handong;Han, Jongdae;Yang, Heekyung;Min, Kyungha
    • Journal of Korea Game Society
    • /
    • v.21 no.3
    • /
    • pp.13-24
    • /
    • 2021
  • This paper shows the face rotation applicable to game character facial illustration. Existing studies limited data to human face data, required a large amount of data, and the synthesized results were not good. In this paper, the following method was introduced to solve the existing problems of existing studies. First, a 3D model with features of the input image was rotated and then rendered as a 2D image to construct a data set. Second, by designing GAN that can learn features of various poses from the data built through the 3D model, the input image can be synthesized at a desired pose. This paper presents the results of synthesizing the game character face illustration. From the synthesized result, it can be confirmed that the proposed method works well.

Face Recognition System Based on the Embedded LINUX (임베디드 리눅스 기반의 눈 영역 비교법을 이용한 얼굴인식)

  • Bae, Eun-Dae;Kim, Seok-Min;Nam, Boo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.120-121
    • /
    • 2006
  • In this paper, We have designed a face recognition system based on the embedded Linux. This paper has an aim in embedded system to recognize the face more exactly. At first, the contrast of the face image is adjusted with lightening compensation method, the skin and lip color is founded based on YCbCr values from the compensated image. To take advantage of the method based on feature and appearance, these methods are applied to the eyes which has the most highly recognition rate of all the part of the human face. For eyes detecting, which is the most important component of the face recognition, we calculate the horizontal gradient of the face image and the maximum value. This part of the face is resized for fitting the eye image. The image, which is resized for fit to the eye image stored to be compared, is extracted to be the feature vectors using the continuous wavelet transform and these vectors are decided to be whether the same person or not with PNN, to miminize the error rate, the accuracy is analyzed due to the rotation or movement of the face. Also last part of this paper we represent many cases to prove the algorithm contains the feature vector extraction and accuracy of the comparison method.

  • PDF

Automatic Face and Eyes Detection: A Scale and Rotation Invariant Approach based on Log-Polar Mapping (Log-Polar 사상의 크기와 회전 불변 특성을 이용한 얼굴과 눈 검출)

  • Choi, Il;Chien, Sung-Il
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.8
    • /
    • pp.88-100
    • /
    • 1999
  • Detecting human face and facial landmarks automatically in an image is as essential step to a fully automatic face recognition system. In this paper, we present a new approach to detect automatically face and its eyes of input image with scale and rotation variations of faces by using an intensity based template matching with a single log-polar face template. In a template-based matching it is necessary to normalize the scale changes and rotations of an input image to a template ones. The log-polar mapping which simulates space-variant human visual system converts scale changes and rotations of input image into constant horizontal and cyclic vertical shifts in the output plane. Intelligent use of this property allows us to shift of the candidate log-polar faces mapped at various fixation points of an input image to be matched to a template over the log-polar plane. Thus, the proposed method eliminates the need of adapting multitemplate and multiresolution schemes, which inevitably give rise to intensive computation involved to cope with scale and rotation variations of faces. Through this scale and rotation involved to cope with scale and method can lead to detecting face and its eyes simultaneously. Experimental results on a database of 795 images show over 98% detection rate.

  • PDF

New Template Based Face Recognition Using Log-polar Mapping and Affine Transformation (로그폴라 사상과 어파인 변환을 이용한 새로운 템플릿 기반 얼굴 인식)

  • Kim, Mun-Gab;Choi, Il;Chien, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.2
    • /
    • pp.1-10
    • /
    • 2002
  • This paper presents the new template based human face recognition methods to improve the recognition performance against scale and in-plane rotation variations of face images. To enhance the recognition performance, the templates are generated by linear or nonlinear operation on multiple images including different scales and rotations of faces. As the invariant features to allow for scale and rotation variations of face images, we adopt the affine transformation, the log-polar mapping, and the log-polar image based FFT. The proposed recognition methods are evaluated in terms of the recognition rate and the processing time. Experimental results show that the proposed template based methods lead to higher recognition rate than the single image based one. The affine transformation based face recognition method shows marginally higher recognition rate than those of the log-polar mapping based method and the log-polar image based FFT, while, in the aspect of processing time, the log-polar mapping based method is the fastest one.

Affine Local Descriptors for Viewpoint Invariant Face Recognition

  • Gao, Yongbin;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.781-784
    • /
    • 2014
  • Face recognition under controlled settings, such as limited viewpoint and illumination change, can achieve good performance nowadays. However, real world application for face recognition is still challenging. In this paper, we use Affine SIFT to detect affine invariant local descriptors for face recognition under large viewpoint change. Affine SIFT is an extension of SIFT algorithm. SIFT algorithm is scale and rotation invariant, which is powerful for small viewpoint changes in face recognition, but it fails when large viewpoint change exists. In our scheme, Affine SIFT is used for both gallery face and probe face, which generates a series of different viewpoints using affine transformation. Therefore, Affine SIFT allows viewpoint difference between gallery face and probe face. Experiment results show our framework achieves better recognition accuracy than SIFT algorithm on FERET database.

Estimation of 3D Rotation Information of Animation Character Face (애니메이션 캐릭터 얼굴의 3차원 회전정보 측정)

  • Jang, Seok-Woo;Weon, Sun-Hee;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.8
    • /
    • pp.49-56
    • /
    • 2011
  • Recently, animation contents has become extensively available along with the development of cultural industry. In this paper, we propose a method to analyze a face of animation character and extract 3D rotational information of the face. The suggested method first generates a dominant color model of a face by learning the face image of animation character. Our system then detects the face and its components with the model, and establishes two coordinate systems: base coordinate system and target coordinate system. Our system estimates three dimensional rotational information of the animation character face using the geometric relationship of the two coordinate systems. Finally, in order to visually represent the extracted 3D information, a 3D face model in which the rotation information is reflected is displayed. In experiments, we show that our method can extract 3D rotation information of a character face reasonably.