• Title/Summary/Keyword: face feature points

Search Result 127, Processing Time 0.027 seconds

ADHD Measurement Devices based on the Image Processing (영상처리를 이용한 ADHD 측정도구)

  • Lee, Jeong-Hee;Lee, Young-Hee;Cha, Eui-Young
    • The Journal of Korean Association of Computer Education
    • /
    • v.14 no.2
    • /
    • pp.95-102
    • /
    • 2011
  • In this paper, we propose measurement-devices for the assessment of input vector consisted of face's movement as feature points through image processing based on AAM technique. The proposed method has been applied to classify students by 2-class(ADHD positive, ADHD negative). Experimental results show that the proposed method was successful in acquiring more objective and quantitative data than conventional methods, it takes advantage of examining without temporal and spatial constraints.

  • PDF

Vision-Based Real-Time Motion Capture System

  • Kim, Tae-Ho;Jo, Kang-Hyun;Yoon, Yeo-Hong;Kang, Hyun-Duk;Kim, Dae-Nyeon;Kim, Se-Yoon;Lee, In-Ho;Park, Chang-Jun;Leem Nan-Hee;Kim, Sung-Een
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.171.5-171
    • /
    • 2001
  • Information that is acquired by adhered sensors on a body has been commonly used for the three-dimensional real-time motion capture algorithm. This paper describes realtime motion capture algorithm using computer vision. In a real-time image sequence, human body silhouette is extracted use a background subtraction between background image and the reference image. Then a human standing posture whether forward or backward is estimated by extraction of skin region in the silhoutte. After then, the principal axis is calculated in the torso and the face region is estimated on the principal axis. Feature points, which are essential condition to track the human gesture, are obtained ...

  • PDF

Enhancing the performance of the facial keypoint detection model by improving the quality of low-resolution facial images (저화질 안면 이미지의 화질 개선를 통한 안면 특징점 검출 모델의 성능 향상)

  • KyoungOok Lee;Yejin Lee;Jonghyuk Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.171-187
    • /
    • 2023
  • When a person's face is recognized through a recording device such as a low-pixel surveillance camera, it is difficult to capture the face due to low image quality. In situations where it is difficult to recognize a person's face, problems such as not being able to identify a criminal suspect or a missing person may occur. Existing studies on face recognition used refined datasets, so the performance could not be measured in various environments. Therefore, to solve the problem of poor face recognition performance in low-quality images, this paper proposes a method to generate high-quality images by performing image quality improvement on low-quality facial images considering various environments, and then improve the performance of facial feature point detection. To confirm the practical applicability of the proposed architecture, an experiment was conducted by selecting a data set in which people appear relatively small in the entire image. In addition, by choosing a facial image dataset considering the mask-wearing situation, the possibility of expanding to real problems was explored. As a result of measuring the performance of the feature point detection model by improving the image quality of the face image, it was confirmed that the face detection after improvement was enhanced by an average of 3.47 times in the case of images without a mask and 9.92 times in the case of wearing a mask. It was confirmed that the RMSE for facial feature points decreased by an average of 8.49 times when wearing a mask and by an average of 2.02 times when not wearing a mask. Therefore, it was possible to verify the applicability of the proposed method by increasing the recognition rate for facial images captured in low quality through image quality improvement.

Robust Eye Localization using Multi-Scale Gabor Feature Vectors (다중 해상도 가버 특징 벡터를 이용한 강인한 눈 검출)

  • Kim, Sang-Hoon;Jung, Sou-Hwan;Cho, Seong-Won;Chung, Sun-Tae
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.1
    • /
    • pp.25-36
    • /
    • 2008
  • Eye localization means localization of the center of the pupils, and is necessary for face recognition and related applications. Most of eye localization methods reported so far still need to be improved about robustness as well as precision for successful applications. In this paper, we propose a robust eye localization method using multi-scale Gabor feature vectors without big computational burden. The eye localization method using Gabor feature vectors is already employed in fuck as EBGM, but the method employed in EBGM is known not to be robust with respect to initial values, illumination, and pose, and may need extensive search range for achieving the required performance, which may cause big computational burden. The proposed method utilizes multi-scale approach. The proposed method first tries to localize eyes in the lower resolution face image by utilizing Gabor Jet similarity between Gabor feature vector at an estimated initial eye coordinates and the Gabor feature vectors in the eye model of the corresponding scale. Then the method localizes eyes in the next scale resolution face image in the same way but with initial eye points estimated from the eye coordinates localized in the lower resolution images. After repeating this process in the same way recursively, the proposed method funally localizes eyes in the original resolution face image. Also, the proposed method provides an effective illumination normalization to make the proposed multi-scale approach more robust to illumination, and additionally applies the illumination normalization technique in the preprocessing stage of the multi-scale approach so that the proposed method enhances the eye detection success rate. Experiment results verify that the proposed eye localization method improves the precision rate without causing big computational overhead compared to other eye localization methods reported in the previous researches and is robust to the variation of post: and illumination.

Development of Facial Expression Recognition System based on Bayesian Network using FACS and AAM (FACS와 AAM을 이용한 Bayesian Network 기반 얼굴 표정 인식 시스템 개발)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.562-567
    • /
    • 2009
  • As a key mechanism of the human emotion interaction, Facial Expression is a powerful tools in HRI(Human Robot Interface) such as Human Computer Interface. By using a facial expression, we can bring out various reaction correspond to emotional state of user in HCI(Human Computer Interaction). Also it can infer that suitable services to supply user from service agents such as intelligent robot. In this article, We addresses the issue of expressive face modeling using an advanced active appearance model for facial emotion recognition. We consider the six universal emotional categories that are defined by Ekman. In human face, emotions are most widely represented with eyes and mouth expression. If we want to recognize the human's emotion from this facial image, we need to extract feature points such as Action Unit(AU) of Ekman. Active Appearance Model (AAM) is one of the commonly used methods for facial feature extraction and it can be applied to construct AU. Regarding the traditional AAM depends on the setting of the initial parameters of the model and this paper introduces a facial emotion recognizing method based on which is combined Advanced AAM with Bayesian Network. Firstly, we obtain the reconstructive parameters of the new gray-scale image by sample-based learning and use them to reconstruct the shape and texture of the new image and calculate the initial parameters of the AAM by the reconstructed facial model. Then reduce the distance error between the model and the target contour by adjusting the parameters of the model. Finally get the model which is matched with the facial feature outline after several iterations and use them to recognize the facial emotion by using Bayesian Network.

Facial Gaze Detection by Estimating Three Dimensional Positional Movements (얼굴의 3차원 위치 및 움직임 추정에 의한 시선 위치 추적)

  • Park, Gang-Ryeong;Kim, Jae-Hui
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.3
    • /
    • pp.23-35
    • /
    • 2002
  • Gaze detection is to locate the position on a monitor screen where a user is looking. In our work, we implement it with a computer vision system setting a single camera above a monitor and a user moves (rotates and/or translates) his face to gaze at a different position on the monitor. To detect the gaze position, we locate facial region and facial features(both eyes, nostrils and lip corners) automatically in 2D camera images. From the movement of feature points detected in starting images, we can compute the initial 3D positions of those features by camera calibration and parameter estimation algorithm. Then, when a user moves(rotates and/or translates) his face in order to gaze at one position on a monitor, the moved 3D positions of those features can be computed from 3D rotation and translation estimation and affine transform. Finally, the gaze position on a monitor is computed from the normal vector of the plane determined by those moved 3D positions of features. As experimental results, we can obtain the gaze position on a monitor(19inches) and the gaze position accuracy between the computed positions and the real ones is about 2.01 inches of RMS error.

A New Intermediate View Reconstruction Scheme based-on Stereo Image Rectification Algorithm (스테레오 영상 보정 알고리즘에 기반한 새로운 중간시점 영상합성 기법)

  • 박창주;고정환;김은수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.632-641
    • /
    • 2004
  • In this paper, a new intermediate view reconstruction method employing a stereo image rectification algorithm by which an uncalibrated input stereo image can be transformed into the calibrated one is suggested and its performance is analyzed. In the proposed method, feature point are extracted from the stereo image pair though detection of the corners and similarities between each pixel of the stereo image. And then, using these detected feature points, the moving vectors between stereo image and the epipolar line is extracted. Finally, the input stereo image is rectified by matching the extracted epipolar line between the stereo image in the horizontal direction and intermediate views are reconstructed by using these rectified stereo images. From some experiments on synthesis of the intermediate views by using three kinds of stereo image; a CCETT's stereo image of 'Man' and two stereo images of 'Face' & 'Car' captured by real camera, it is analyzed that PSNRs of the intermediate views reconstructed from the calibrated image by using the proposed rectification algorithm are improved by 2.5㏈ for 'Man', 4.26㏈ for 'Pace' and 3.85㏈ for 'Car' than !hose of the uncalibrated ones. This good experimental result suggests a possibility of practical application of the unposed stereo image rectification algorithm-based intermediate view reconstruction view to the uncalibrated stereo images.

Gaze Detection Based on Facial Features and Linear Interpolation on Mobile Devices (모바일 기기에서의 얼굴 특징점 및 선형 보간법 기반 시선 추적)

  • Ko, You-Jin;Park, Kang-Ryoung
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.8
    • /
    • pp.1089-1098
    • /
    • 2009
  • Recently, many researches of making more comfortable input device based on gaze detection technology have been performed in human computer interface. Previous researches were performed on the computer environment with a large sized monitor. With recent increase of using mobile device, the necessities of interfacing by gaze detection on mobile environment were also increased. In this paper, we research about the gaze detection method by using UMPC (Ultra-Mobile PC) and an embedded camera of UMPC based on face and facial feature detection by AAM (Active Appearance Model). This paper has following three originalities. First, different from previous research, we propose a method for tracking user's gaze position in mobile device which has a small sized screen. Second, in order to detect facial feature points, we use AAM. Third, gaze detection accuracy is not degraded according to Z distance based on the normalization of input features by using the features which are obtained in an initial user calibration stage. Experimental results showed that gaze detection error was 1.77 degrees and it was reduced by mouse dragging based on the additional facial movement.

  • PDF

A Three-Dimensional Facial Modeling and Prediction System (3차원 얼굴 모델링과 예측 시스템)

  • Gu, Bon-Gwan;Jeong, Cheol-Hui;Cho, Sun-Young;Lee, Myeong-Won
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.1
    • /
    • pp.9-16
    • /
    • 2011
  • In this paper, we describe the development of a system for generating a 3-dimensional human face and predicting it's appearance as it ages over subsequent years using 3D scanned facial data and photo images. It is composed of 3-dimensional texture mapping functions, a facial definition parameter input tool, and 3-dimensional facial prediction algorithms. With the texture mapping functions, we can generate a new model of a given face at a specified age using a scanned facial model and photo images. The texture mapping is done using three photo images - a front and two side images of a face. The facial definition parameter input tool is a user interface necessary for texture mapping and used for matching facial feature points between photo images and a 3D scanned facial model in order to obtain material values in high resolution. We have calculated material values for future facial models and predicted future facial models in high resolution with a statistical analysis using 100 scanned facial models.

Realistic individual 3D face modeling (사실적인 3D 얼굴 모델링 시스템)

  • Kim, Sang-Hoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1187-1193
    • /
    • 2013
  • In this paper, we present realistic 3D head modeling and facial expression systems. For 3D head modeling, we perform generic model fitting to make individual head shape and texture mapping. To calculate the deformation function in the generic model fitting, we determine correspondence between individual heads and the generic model. Then, we reconstruct the feature points to 3D with simultaneously captured images from calibrated stereo camera. For texture mapping, we project the fitted generic model to image and map the texture in the predefined triangle mesh to generic model. To prevent extracting the wrong texture, we propose a simple method using a modified interpolation function. For generating 3D facial expression, we use the vector muscle based algorithm. For more realistic facial expression, we add the deformation of the skin according to the jaw rotation to basic vector muscle model and apply mass spring model. Finally, several 3D facial expression results are shown at the end of the paper.