• Title/Summary/Keyword: face detect

Search Result 380, Processing Time 0.028 seconds

Yawn Recognition Algorism for Prevention of Drowsy Driving (졸음운전 방지를 위한 하품 인식 알고리즘)

  • Yoon, Won-Jong;Lee, Jaesung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.447-450
    • /
    • 2013
  • This paper proposes the way to prevent drowsy driving by recognizing drivers eyes and yawn using a front camera. The method uses the Viola-Jones algorithm to detect eyes area and mouth area from detection face region. In the eyes area, it uses the Hough transform to recognize eye circle in order to distinguish drowsy driving. In the mouth area, it determines whether for the driver to yawn through a sub-window testing by applying a HSV-filter and detecting skin color of the tongue. The test result shows that the recognition rate of yawn reaches up to 90%. It is expected that the method introduced in this paper might contribute to reduce the number of drowsy driving accidents.

  • PDF

Hacking Detection Mechanism of Cyber Attacks Modeling (외부 해킹 탐지를 위한 사이버 공격 모델링)

  • Cheon, Yang-Ha
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.9
    • /
    • pp.1313-1318
    • /
    • 2013
  • In order to actively respond to cyber attacks, not only the security systems such as IDS, IPS, and Firewalls, but also ESM, a system that detects cyber attacks by analyzing various log data, are preferably deployed. However, as the attacks be come more elaborate and advanced, existing signature-based detection methods start to face their limitations. In response to that, researches upon symptom detection technology based on attack modeling by employing big-data analysis technology are actively on-going. This symptom detection technology is effective when it can accurately extract features of attacks and manipulate them to successfully execute the attack modeling. We propose the ways to extract attack features which can play a role as the basis of the modeling and detect intelligent threats by carrying out scenario-based modeling.

Diagnosis and Treatment of odontogenic cutaneous sinus tract : a retrospective study (치성 피부 누공 환자의 진단과 치료 : 후향적 연구)

  • Kim, Sung-Joon;Kahm, Se Hoon
    • The Journal of the Korean dental association
    • /
    • v.54 no.9
    • /
    • pp.684-691
    • /
    • 2016
  • The odontogenic cutaneous fistula in facial area is uncommon but, well defined disease. It is difficult to diagnose from the dental origin of cutaneous sinus tract. Most patients may visit to the dermatologists or general hospital without cause of disease. They usually be treated by repeated surgical excisions, biopsies, and antibiotic medications, but suffered from recurrences. We studied odontogenic cutaneous fistula through retrospective study in Jeju Special Self-Governing Province between 1 January 2009 and 12 December 2015. There were 3 males, 5 females from 14 to 78 years old with an average age of 50.4 years old. Only 2 patients felt the toothache, others didn't detect it. They suffered from recurrences and repeated treatments for 3 to 11 months with an average period of 7.9 months. They visited average 2.8 hospitals before a precise diagnosis in a dental clinic. All cases were fully healed endodontic treatment or extraction of origin teeth without recurrences. In conclusion, the cause of cutaneous fistula in facial area can be odontogenic. If dentists or doctors diagnose a patient with cutaneous fistula on face, they should check dental problems or take x-ray views for precise diagnosis. It could be helpful for differential diagnosis.

  • PDF

Tracking of eyes based on the iterated spatial moment using weighted gray level (명암 가중치를 이용한 반복 수렴 공간 모멘트기반 눈동자의 시선 추적)

  • Choi, Woo-Sung;Lee, Kyu-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1240-1250
    • /
    • 2010
  • In this paper, an eye tracking method is presented by using on iterated spatial moment adapting weighted gray level that can accurately detect and track user's eyes under the complicated background. The region of face is detected by using Haar-like feature before extracting region of eyes to minimize an region of interest from the input picture of CCD camera. And the region of eyes is detected by using eigeneye based on the eigenface of Principal component analysis. Also, feature points of eyes are detected from darkest part in the region of eyes. The tracking of eyes is achieved correctly by using iterated spatial moment adapting weighted gray level.

Lip Detection using Color Distribution and Support Vector Machine for Visual Feature Extraction of Bimodal Speech Recognition System (바이모달 음성인식기의 시각 특징 추출을 위한 색상 분석자 SVM을 이용한 입술 위치 검출)

  • 정지년;양현승
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.403-410
    • /
    • 2004
  • Bimodal speech recognition systems have been proposed for enhancing recognition rate of ASR under noisy environments. Visual feature extraction is very important to develop these systems. To extract visual features, it is necessary to detect exact lip position. This paper proposed the method that detects a lip position using color similarity model and SVM. Face/Lip color distribution is teamed and the initial lip position is found by using that. The exact lip position is detected by scanning neighbor area with SVM. By experiments, it is shown that this method detects lip position exactly and fast.

Metal Object Detection System For Drive Inside Protection (내부 운전자 보호를 위한 금속 물체 탐지 시스템)

  • Kim, Jin-Kyu;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.609-614
    • /
    • 2009
  • The purpose of this paper is to design the metal object detection system for drive inside protection. To do this, we propose the algorithm for designing the color filter that can detect the metal object using fuzzy theory and the algorithm for detecting area of the driver's face using fuzzy skin color filter. Also, by using the proposed algorithm, we propose the algorithm for detecting the metallic object candidate regions. And, the metallic object color filter is then applied to find the candidate regions. Finally, we show the effectiveness and feasibility of the proposed method through some experiments.

Tracking of eyes based on the spatial moment using weighted gray level (명암 가중치를 이용한 공간 모멘트기반 눈동자 추적)

  • Choi, Woo-Sung;Lee, Kyu-Won;Kim, Kwan-Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.198-201
    • /
    • 2009
  • In this paper, an eye tracking method is presented by using on iterated spatial moment adapting weighted gray level that can accurately detect and track user's eyes under the complicated background. The region of face is detected by using Haar-like feature before extracting region of eyes to minimize an region of interest from the input picture of CCD camera. And the region of eyes is detected by using eigeneye based on the eigenface of Principal component analysis. And then feature points of eyes are detected from darkest part in the region of eyes. The tracking of eyes is achieved correctly by using iterated spatial moment adapting weighted gray level.

  • PDF

Modern Study on Internet of Medical Things (IOMT) Security

  • Aljumaie, Ghada Sultan;Alzeer, Ghada Hisham;Alghamdi, Reham Khaild;Alsuwat, Hatim;Alsuwat, Emad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.254-266
    • /
    • 2021
  • The Internet of Medical Things (IoMTs) are to be considered an investment and an improvement to respond effectively and efficiently to patient needs, as it reduces healthcare costs, provides the timely attendance of medical responses, and increases the quality of medical treatment. However, IoMT devices face exposure from several security threats that defer in function and thus can pose a significant risk to how private and safe a patient's data is. This document works as a comprehensive review of modern approaches to achieving security within the Internet of Things. Most of the papers cited here are used been carefully selected based on how recently it has been published. The paper highlights some common attacks on IoMTs. Also, highlighting the process by which secure authentication mechanisms can be achieved on IoMTs, we present several means to detect different attacks in IoMTs

Video Expression Recognition Method Based on Spatiotemporal Recurrent Neural Network and Feature Fusion

  • Zhou, Xuan
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.337-351
    • /
    • 2021
  • Automatically recognizing facial expressions in video sequences is a challenging task because there is little direct correlation between facial features and subjective emotions in video. To overcome the problem, a video facial expression recognition method using spatiotemporal recurrent neural network and feature fusion is proposed. Firstly, the video is preprocessed. Then, the double-layer cascade structure is used to detect a face in a video image. In addition, two deep convolutional neural networks are used to extract the time-domain and airspace facial features in the video. The spatial convolutional neural network is used to extract the spatial information features from each frame of the static expression images in the video. The temporal convolutional neural network is used to extract the dynamic information features from the optical flow information from multiple frames of expression images in the video. A multiplication fusion is performed with the spatiotemporal features learned by the two deep convolutional neural networks. Finally, the fused features are input to the support vector machine to realize the facial expression classification task. The experimental results on cNTERFACE, RML, and AFEW6.0 datasets show that the recognition rates obtained by the proposed method are as high as 88.67%, 70.32%, and 63.84%, respectively. Comparative experiments show that the proposed method obtains higher recognition accuracy than other recently reported methods.

An Automatic Strabismus Screening Method with Corneal Light Reflex based on Image Processing

  • Huang, Xi-Lang;Kim, Chang Zoo;Choi, Seon Han
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.642-650
    • /
    • 2021
  • Strabismus is one of the most common disease that might be associated with vision impairment. Especially in infants and children, it is critical to detect strabismus at an early age because uncorrected strabismus may go on to develop amblyopia. To this end, ophthalmologists usually perform the Hirschberg test, which observes corneal light reflex (CLR) to determine the presence and type of strabismus. However, this test is usually done manually in a hospital, which might be difficult for patients who live in a remote area with poor medical access. To address this issue, we propose an automatic strabismus screening method that calculates the CLR ratio to determine the presence of strabismus based on image processing. In particular, the method first employs a pre-trained face detection model and a 68 facial landmarks detector to extract the eye region image. The data points located in the limbus are then collected, and the least square method is applied to obtain the center coordinates of the iris. Finally, the coordinate of the reflective light point center within the iris is extracted and used to calculate the CLR ratio with the coordinate of iris edges. Experimental results with several images demonstrate that the proposed method can be a promising solution to provide strabismus screening for patients who cannot visit hospitals.