• Title/Summary/Keyword: face component detection

Search Result 112, Processing Time 0.05 seconds

Comparison of recognition rate with distance on stereo face images base PCA (PCA기반의 스테레오 얼굴영상에서 거리에 따른 인식률 비교)

  • Park Chang-Han;Namkung Jae-Chan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.1
    • /
    • pp.9-16
    • /
    • 2005
  • In this paper, we compare face recognition rate by distance change using Principal Component Analysis algorithm being input left and right image in stereo image. Change to YCbCr color space from RGB color space in proposed method and face region does detection. Also, after acquire distance using stereo image extracted face image's extension and reduce do extract robust face region, experimented recognition rate by using PCA algorithm. Could get face recognition rate of 98.61%(30cm), 98.91%(50cm), 99.05%(100cm), 99.90%(120cm), 97.31%(150cm) and 96.71%(200cm) by average recognition result of acquired face image. Therefore, method that is proposed through an experiment showed that can get high recognition rate if apply scale up or reduction according to distance.

Face Tracking System Using Updated Skin Color (업데이트된 피부색을 이용한 얼굴 추적 시스템)

  • Ahn, Kyung-Hee;Kim, Jong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.5
    • /
    • pp.610-619
    • /
    • 2015
  • *In this paper, we propose a real-time face tracking system using an adaptive face detector and a tracking algorithm. An image is divided into the regions of background and face candidate by a real-time updated skin color identifying system in order to accurately detect facial features. The facial characteristics are extracted using the five types of simple Haar-like features. The extracted features are reinterpreted by Principal Component Analysis (PCA), and the interpreted principal components are processed by Support Vector Machine (SVM) that classifies into facial and non-facial areas. The movement of the face is traced by Kalman filter and Mean shift, which use the static information of the detected faces and the differences between previous and current frames. The proposed system identifies the initial skin color and updates it through a real-time color detecting system. A similar background color can be removed by updating the skin color. Also, the performance increases up to 20% when the background color is reduced in comparison to extracting features from the entire region. The increased detection rate and speed are acquired by the usage of Kalman filter and Mean shift.

Eye Pattern Detection Using SVD and HMM Technique from CCD Camera Face Image (CCD 카메라 얼굴 영상에서의 SVD 및 HMM 기법에 의한 눈 패턴 검출)

  • Jin, Kyung-Chan;Miche, Pierre;Park, Il-Yong;Sohn, Byung-Gi;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.63-68
    • /
    • 1999
  • We proposed a method of eye pattern detection in the 2-D image which was obtained by CCD video camera. To detect face region and eye pattern, we proposed pattern search network and batch SVD algorithm which had the statistical equivalence of PCA. We also used HMM to improve the accuracy of detection. As a result, we acknowledged that the proposed algorithm was superior to PCA pattern detection algorithm in computational cost and accuracy of defection. Furthermore, we evaluated that the proposed algorithm was possible in real-time face pattern detection with 2 frame images per second.

  • PDF

A Study on Face Recognition Using Diretional Face Shape and SOFM (방향성 얼굴형상과 SOFM을 이용한 얼굴 인식에 관한 연구)

  • Kim, Seung-Jae;Lee, Jung-Jae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.109-116
    • /
    • 2019
  • This study proposed a robust detection algorithm. It detects face more stably with respect to changes in light and rotation for the identification of a face shape. Also it satisfies both efficiency of calculation and the function of detection. The algorithm proposed segmented the face area through pre-processing using a face shape as input information in an environment with a single camera and then identified the shape using a Self Organized Feature Map(SOFM). However, as it is not easy to exactly recognize a face area which is sensitive to light, it has a large degree of freedom, and there is a large error bound, to enhance the identification rate, rotation information on the face shape was made into a database and then a principal component analysis was conducted. Also, as there were fewer calculations due to the fewer dimensions, the time for real-time identification could be decreased.

Real-time Face Detection and Verification Method using PCA and LDA (PCA와 LDA를 이용한 실시간 얼굴 검출 및 검증 기법)

  • 홍은혜;고병철;변혜란
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.2
    • /
    • pp.213-223
    • /
    • 2004
  • In this paper, we propose a new face detection method for real-time applications. It is based on the template-matching and appearance-based method. At first, we apply Min-max normalization with histogram equalization to the input image according to the variation of intensity. By applying the PCA transform to both the input image and template, PC components are obtained and they are applied to the LDA transform. Then, we estimate the distances between the input image and template, and we select one region which has the smallest distance. SVM is used for final decision whether the candidate face region is a real face or not. Since we detect a face region not the full region but within the $\pm$12 search window, our method shows a good speed and detection rate. Through the experiments with 6 category input videos, our algorithm shows the better performance than the existing methods that use only the PCA transform. and the PCA and LDA transform.

An Acceleration Method of Face Detection using Forecast Map (예측맵을 이용한 얼굴탐색의 가속화기법)

  • 조경식;구자영
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.2
    • /
    • pp.31-36
    • /
    • 2003
  • This paper proposes an acceleration method of PCA(Principal Component Analysis) based feature detection. The feature detection method makes decision whether the target feature is included in a given image, and if included, calculates the position and extent of the target feature. The position and scale of the target feature or face is not known previously, all the possible locations should be tested for various scales to detect the target. This is a search Problem in huge search space. This Paper proposes a fast face and feature detection method by reducing the search space using the multi-stage prediction map and contour Prediction map. A Proposed method compared to the existing whole search way, and it was able to reduce a computational complexity below 10% by experiment.

  • PDF

Face detection using fuzzy color classifier and convex-hull (Fuzzy Color Classifier 와 Convex-hull을 사용한 얼굴 검출)

  • Park, Min-Sik;Park, Chang-U;Kim, Won-Ha;Park, Min-Yong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.2
    • /
    • pp.69-78
    • /
    • 2002
  • This paper addresses a method to automatically detect out a person's face from a given image that consists of a hair and face view of the person and a complex background scene. Out method involves an effective detection algorithm that exploits the spatial distribution characteristics of human skin color via an adaptive fuzzy color classifier (AFCC), The universal skin-color map is derived on the chrominance component of human skin color in Cb, Cr and their corresponding luminance. The desired fuzzy system is applied to decide the skin color regions and those that are not. We use RGB model for extracting the hair color regions because the hair regions often show low brightness and chromaticity estimation of low brightness color is not stable. After some preprocessing, we apply convex-hull to each region. Consequent face detection is made from the relationship between a face's convex-hull and a head's convex-hull. The algorithm using the convex-hull shows better performance than the algorithm using pattern method. The performance of the proposed algorithm is shown by experiment. Experimental results show that the proposed algorithm successfully and efficiently detects the faces without constrained input conditions in color images.

The Suggestion of LINF Algorithm for a Real-time Face Recognition System (실시간 얼굴인식 시스템을 위한 새로운 LINF 알고리즘의 제안)

  • Jang Hye-Kyoung;Kang Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.79-86
    • /
    • 2005
  • In this paper, we propose a new LINF(Linear Independent Non-negative Factorization) algorithm for real-time face recognition systea This system greatly consists of the two parts: 1) face extraction part; 2) face recognition part. In the face extraction Part we applied subtraction image, the detection of eye and mouth region , and normalization method, and then in the face recognition Part we used LINF in extracted face candidate region images. The existing recognition system using only PCA(Principal Component Analysis) showed low recognition rates, and it was hard in the recognition system using only LDA(Linear Discriminants Analysis) to apply LDA directly when the training set is small. To overcome these shortcomings, we reduced dimension as the matrix that had non-negative value to be different from former eigenfaces and then applied LDA to the matrix in the proposed system We have experimented using self-organized DAIJFace database and ORL database offered by AT(')T laboratory in Cambridge, U.K. to evaluate the performance of the proposed system. The experimental results showed that the proposed method outperformed PCA, LDA, ICA(Independent Component Analysis) and PLMA(PCA-based LDA mixture algorithm) method within the framework of recognition accuracy.

Real Time Face Detection and Recognition using Rectangular Feature based Classifier and Class Matching Algorithm (사각형 특징 기반 분류기와 클래스 매칭을 이용한 실시간 얼굴 검출 및 인식)

  • Kim, Jong-Min;Kang, Myung-A
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.1
    • /
    • pp.19-26
    • /
    • 2010
  • This paper proposes a classifier based on rectangular feature to detect face in real time. The goal is to realize a strong detection algorithm which satisfies both efficiency in calculation and detection performance. The proposed algorithm consists of the following three stages: Feature creation, classifier study and real time facial domain detection. Feature creation organizes a feature set with the proposed five rectangular features and calculates the feature values efficiently by using SAT (Summed-Area Tables). Classifier learning creates classifiers hierarchically by using the AdaBoost algorithm. In addition, it gets excellent detection performance by applying important face patterns repeatedly at the next level. Real time facial domain detection finds facial domains rapidly and efficiently through the classifier based on the rectangular feature that was created. Also, the recognition rate was improved by using the domain which detected a face domain as the input image and by using PCA and KNN algorithms and a Class to Class rather than the existing Point to Point technique.