• Title/Summary/Keyword: face and facial features detection

Search Result 115, Processing Time 0.027 seconds

Masked Face Recognition via a Combined SIFT and DLBP Features Trained in CNN Model

  • Aljarallah, Nahla Fahad;Uliyan, Diaa Mohammed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.319-331
    • /
    • 2022
  • The latest global COVID-19 pandemic has made the use of facial masks an important aspect of our lives. People are advised to cover their faces in public spaces to discourage illness from spreading. Using these face masks posed a significant concern about the exactness of the face identification method used to search and unlock telephones at the school/office. Many companies have already built the requisite data in-house to incorporate such a scheme, using face recognition as an authentication. Unfortunately, veiled faces hinder the detection and acknowledgment of these facial identity schemes and seek to invalidate the internal data collection. Biometric systems that use the face as authentication cause problems with detection or recognition (face or persons). In this research, a novel model has been developed to detect and recognize faces and persons for authentication using scale invariant features (SIFT) for the whole segmented face with an efficient local binary texture features (DLBP) in region of eyes in the masked face. The Fuzzy C means is utilized to segment the image. These mixed features are trained significantly in a convolution neural network (CNN) model. The main advantage of this model is that can detect and recognizing faces by assigning weights to the selected features aimed to grant or provoke permissions with high accuracy.

A Study on Facial Feature' Morphological Information Extraction and Classification for Avatar Generation (아바타 생성을 위한 이목구비 모양 특징정보 추출 및 분류에 관한 연구)

  • 박연출
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.10
    • /
    • pp.631-642
    • /
    • 2003
  • We propose an approach to extract and to classify facial features into some classes from one's photo as prepared classification standards to generate one's avatar. Facial Feature Extraction and Classification was executed at eyes, nose, lips, jaw separately and I presented each facial features and classification standards. Extracted Facial Features are used for calculation to features of professional designer's facial component images. Then, most similar facial component images are mapped onto avatar's vector face.

  • PDF

A Facial Feature Detection using Light Compensation and Appearance-based Features (빛 보상과 외형 기반의 특징을 이용한 얼굴 특징 검출)

  • Kim Jin-Ok
    • Journal of Internet Computing and Services
    • /
    • v.7 no.3
    • /
    • pp.143-153
    • /
    • 2006
  • Facial feature detection is a basic technology in applications such as human computer interface, face recognition, face tracking and image database management. The speed of feature detection algorithm is one of the main issues for facial feature detection in real-time environment. Primary factors like a variation by lighting effect, location, rotation and complex background give an effect to decrease a detection ratio. A facial feature detection algorithm is proposed to improve the detection ratio and the detection speed. The proposed algorithm detects skin regions over the entire image improved by CLAHE, an algorithm for light compensation against varying lighting conditions. To extract facial feature points on detected skin regions, it uses appearance-based geometrical characteristics of a face. Since the method shows fast detection speed as well as efficient face-detection ratio, it can be applied in real-time application to face tracking and face recognition.

  • PDF

A Study on Automatic Detection of The Face and Facial Features for Face Recognition System in Real Time (실시간 얼굴인식 시스템을 위한 얼굴의 위치 및 각 부위 자동 검출에 관한 연구)

  • 구자일;홍준표
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.4
    • /
    • pp.379-388
    • /
    • 2002
  • In this paper, the real-time algorithm is proposed for automatic detection of the face and facial features. In the face region, we extracted eyes, nose, mouth and so forth. There are two methods to extract them; one is the method of using the location information of them, other is the method of using Gaussian second derivatives filters. This system have high speed and accuracy because the facial feature extraction is processed only by detected face region, not by whole image. There are some kinds of good experimental result for the proposed algorithm; high face detection rate of 95%, high speed of lower than 1sec. the reduction of illumination effect, and the compensation of face tilt.

Face Detection Based on Distribution Map (분포맵에 기반한 얼굴 영역 검출)

  • Cho Han-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.1
    • /
    • pp.11-22
    • /
    • 2006
  • Recently face detection has actively been researched due to its wide range of applications, such as personal identification and security systems. In this paper, a new face detection method based on the distribution map is proposed. Face-like regions are first extracted by applying the skin color map with the frequency to a color image and then, possible eye regions are determined by using the pupil color distribution map within the face-like regions. This enables the reduction of space for finding facial features. Eye candidates are detected by means of a template matching method using weighted window, which utilizes the correlation values of the luminance component and chrominance components as feature vectors. Finally, a cost function for mouth detection and location information between the facial features are applied to each pair of the eye candidates for face detection. Experimental results show that the proposed method can achieve a high performance.

  • PDF

Region-Based Facial Expression Recognition in Still Images

  • Nagi, Gawed M.;Rahmat, Rahmita O.K.;Khalid, Fatimah;Taufik, Muhamad
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.173-188
    • /
    • 2013
  • In Facial Expression Recognition Systems (FERS), only particular regions of the face are utilized for discrimination. The areas of the eyes, eyebrows, nose, and mouth are the most important features in any FERS. Applying facial features descriptors such as the local binary pattern (LBP) on such areas results in an effective and efficient FERS. In this paper, we propose an automatic facial expression recognition system. Unlike other systems, it detects and extracts the informative and discriminant regions of the face (i.e., eyes, nose, and mouth areas) using Haar-feature based cascade classifiers and these region-based features are stored into separate image files as a preprocessing step. Then, LBP is applied to these image files for facial texture representation and a feature-vector per subject is obtained by concatenating the resulting LBP histograms of the decomposed region-based features. The one-vs.-rest SVM, which is a popular multi-classification method, is employed with the Radial Basis Function (RBF) for facial expression classification. Experimental results show that this approach yields good performance for both frontal and near-frontal facial images in terms of accuracy and time complexity. Cohn-Kanade and JAFFE, which are benchmark facial expression datasets, are used to evaluate this approach.

Vector-based Face Generation using Montage and Shading Method (몽타주 기법과 음영합성 기법을 이용한 벡터기반 얼굴 생성)

  • 박연출;오해석
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.6
    • /
    • pp.817-828
    • /
    • 2004
  • In this paper, we propose vector-based face generation system that uses montage and shading method and preserves designer(artist)'s style. Proposed system generates character's face similar to human face automatically using facial features that extracted from a photograph. In addition, unlike previous face generation system that uses contours, we propose the system is based on color and composes face from facial features and shade extracted from a photograph. Thus, it has advantages that can make more realistic face similar to human face. Since this system is vector-based, the generated character's face has no size limit and constraint. Therefore it is available to transform the shape freely and to apply various facial expressions to 2D face. Moreover, it has distinctiveness with another approaches in point that can keep artist's impression just as it is in result.

Robust Extraction of Facial Features under Illumination Variations (조명 변화에 견고한 얼굴 특징 추출)

  • Jung Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.1-8
    • /
    • 2005
  • Facial analysis is used in many applications like face recognition systems, human-computer interface through head movements or facial expressions, model based coding, or virtual reality. In all these applications a very precise extraction of facial feature points are necessary. In this paper we presents a method for automatic extraction of the facial features Points such as mouth corners, eye corners, eyebrow corners. First, face region is detected by AdaBoost-based object detection algorithm. Then a combination of three kinds of feature energy for facial features are computed; valley energy, intensity energy and edge energy. After feature area are detected by searching horizontal rectangles which has high feature energy. Finally, a corner detection algorithm is applied on the end region of each feature area. Because we integrate three feature energy and the suggested estimation method for valley energy and intensity energy are adaptive to the illumination change, the proposed feature extraction method is robust under various conditions.

  • PDF

A study of face detection using color component (색상요소를 고려한 얼굴검출에 대한 연구)

  • 이정하;강진석;최연성;김장형
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.240-243
    • /
    • 2002
  • In this paper, we propose a face region detection based on skin-color distribution and facial feature extraction algorithm in color still images. To extract face region, we transform color using general skin-color distribution. Facial features are extracted by edge transformation. This detection process reduces calculation time by a scale-down scanning from segmented region. we can detect face region in various facial Expression, skin-color deference and tilted face images.

  • PDF

A Flexible Feature Matching for Automatic face and Facial feature Points Detection (얼굴과 얼굴 특징점 자동 검출을 위한 탄력적 특징 정합)

  • 박호식;손형경;정연길;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.608-612
    • /
    • 2002
  • An automatic face and facial feature points(FFPs) detection system is proposed. A face is represented as a graph where the nodes are placed at facial feature points(FFPs) labeled by their Gabor features md the edges are describes their spatial relations. An innovative flexible feature matching is proposed to perform features correspondence between models and the input image. This matching model works likes random diffusion process in the image spare by employing the locally competitive and globally corporative mechanism. The system works nicely on the face images under complicated background, pose variations and distorted by facial accessories. We demonstrate the benefits of our approach by its implementation on the fare identification system.

  • PDF