• Title/Summary/Keyword: fabry-perot

Search Result 302, Processing Time 0.021 seconds

Analysis of Surface Reflection All-Optical Switches using InGaAs/InAlAs Multiple Quantum Wells (InGaAs/InAlAs 다중 양자우물을 이용한 표면 반사형 전광 스위치의 해석)

  • Choi, Yong-Ho;Kim, Kyung-Whan;Choi, Woo-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.9
    • /
    • pp.23-30
    • /
    • 2000
  • The performance of two types of surface reflecting all-optical switches with InGaAs/InAlAs multiple quantum wells are investigated. The absorption spectra and the refractive index changes of the quantum well are calculated for various pump and probe beam intensities and device conditions. From theses results, on ON/OFF ratio and switching speed of the two switches are compared. It is shown that the switch using DBR has higher ON/OFF ratio and higher switching speed than the switch without DBR.

  • PDF

Impact Monitoring in Composite Beam Using Stabilization Controlled FBG Sensor System (안정화된 FBG 센서를 이용한 복합적층보에서의 충격위치검출)

  • Bang Hyung-Joon;Park Sang-Oh;Hong Chang-Sun;Kim Chun-Gon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.103-106
    • /
    • 2004
  • Impact location monitoring is one of the major concerns of the smart health monitoring. For this application, multipoint ultrasonic sensors are to be employed. In this study, a multiplexed FBG sensor system with wide dynamic range was proposed and stabilization controlling system was also developed for the maintenance of maximum sensitivity of sensors. For the intensity demodulation system of FBG sensors, Fabry-Perot tunable filter(FP-TF) with 23.8nm FSR(free spectral range) was used, which behaves as two separate filters between $1530 \~ 1560$ nm range. Two FBG sensors were attached on the bottom side of the graphite/epoxy composite beam specimen, and low velocity impact tests were performed to detect the one-dimensional impact locations. Impact locations were calculated by the arrival time differences of the impact longitudinal waves acquired by the two FBGs. As a result, multiplexed in-line FBG sensors could detect the moment of impact precisely and found the impact locations with the average error of 1.32mm.

  • PDF

A Structure Non-Contact and Non-destructive Evaluation Using Laser-Ultrasonics Application (구조물의 비접촉 비파괴 검사를 위한 레이저 초음파법 적용)

  • Kim Jae-Yeal;Song Kyung-Seok;Yang Dong-Jo;Kim You-Hong
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.71-76
    • /
    • 2005
  • The defects evaluation of the interior and the surface would be considered as vital characteristics in predicting the total life span of the steel structure. More importantly, the understandings in the interior composite of welding zone and the notifications in the presence, the formation, and the positioning of the non-metallic inclusion are necessary as well, since there were signs of relatively high defect frequency presented in the welding zone. The ultrasonic testing is a highly recommended technique chosen from among other techniques because of variety of advantages in conducting the non-destructive testing for the welding zone. However, the ultrasonic testing had technical disadvantages referred as followings; the problems due to the couplant between the PZT and the specimen, the formations that were miniature and complex, the moving subject, and the high temperature surrounding the specimen. This research was conducted to resolve the technical disadvantages of the contact ultrasonic testing by studying the non-contact ultrasonic testing where the ultrasonic waves were transferred by the laser, and revealing the specimen defects at its interior part and its surface part. The ultimate goal of this research was to develop a non-destructive evaluation applying the laser manipulated ultrasonic method for the steel structure.

  • PDF

Laser-Ultrasonics Application for Non-Contact and Non-destructive Evaluation of Structure (구조물의 비접촉 비파괴 검사를 위한 레이저 초음파법 적용)

  • Kim Jae-Yeal;Song Kyung-Seok;Yang Dong-Jo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.49-54
    • /
    • 2005
  • Measuring defects on the inside and on the surface of a steel structure is very important technology in order to predict the life span of the structure. In particular, a place with a high probability that it may contain defects is a welded part and it is very important to check defects in the part, absence/presence of non-uniform substances, its shape, and the location. Many non-destructive tests can be applied, but the ultrasonic flow detection test is widely used with some advantages. The ultrasonic flow detection test, however, cannot be applied when there is a problem by a contact medium between PZT and a specimen, in case of a small and complicated shape or a moving object or when the specimen is hot. In this study, to solve the problems of the contact ultrasonic flow detection test, the non-contact ultrasonic flow detection test for sending/receiving ultrasonic waves using lasers was described. I intended to develop a non-destructive detection system applying the laser application ultrasonic test to a steel structure by detecting the defects inside of and on the surface of the specimen.

Detection of White Light Interference Peak Position utilizing Analog Signal Processing (아날로그 신호처리를 이용한 백색광 간섭 피크의 검출)

  • Yeh, Yun-Hae;Lee, Jong-Kwon
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.319-325
    • /
    • 2005
  • A signal processing method for white light interferometry (WLI), which performs a series of analog signal processing steps to locate the central interference fringe position at high speed: is developed and applied to a WLI temperature sensor system. We found that the new method has random walk of $0.019^{\circ}C/\sqrt{Hz}$ with good linearity. However, the temperature change in the path-matching interferometer results in drift of the measured sensor output. The temperature dependence of drift in the WLI temperature sensor system, was calculated to be $1.42{\mu}m/^{\circ}C$. It is also found that the relationship between the peak spacing in the interferogram and the spacing measured by the method can be nonlinear when the fringe spacing is comparable to the coherence length of the source.

Active Focusing of Light in Plasmonic Lens via Kerr Effect

  • Nasari, Hadiseh;Abrishamian, Mohammad Sadegh
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.305-312
    • /
    • 2012
  • We numerically demonstrate the performance of a plasmonic lens composed of an array of nanoslits perforated on thin metallic film with slanted cuts on the output surface. Embedding Kerr nonlinear material in nanoslits is employed to modulate the output beam. A two dimensional nonlinear-dispersive finite-difference time-domain (2D N-D-FDTD) method is utilized. The performance parameters of the proposed lens such as focal length, full-width half-maximum, depth of focus and the efficiency of focusing are investigated. The structure is illuminated by a TM-polarized plane wave and a Gaussian beam. The effect of the beam waist of the Gaussian beam and the incident light intensity on the focusing effect is explored. An exact formula is proposed to derive electric field E from electric flux density D in a Kerr-Dispersive medium. Surface plasmon (SPs) modes and Fabry-Perot (F-P) resonances are used to explain the physical origin of the light focusing phenomenon. Focused ion beam milling can be implemented to fabricate the proposed lens. It can find valuable potential applications in integrated optics and for tuning purposes.

Doppler LIDAR Measurement of Wind in the Stratosphere

  • Dong, Jihui;Cha, Hyun-Ki;Kim, Duk-Hyeon;Baik, Sung-Hoon;Wang, Guocheng;Tang, Lei;Shu, Zhifeng;Xu, Wenjing;Hu, Dongdong;Sun, Dongsong
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.199-203
    • /
    • 2010
  • A mobile direct detection Doppler LIDAR based on molecular backscattering for measurement of wind in the stratosphere has been developed in Hefei, China. First, the principle of wind measurement with direct detection Doppler LIDAR is presented. Then the configuration of the LIDAR system is described. Finally, the primary experimental results are provided and analyzed. The results indicate that the detection range of the designed Doppler LIDAR reached 50 km altitude, and there is good consistency between the molecular Doppler wind LIDAR(DWL) and the wind profile radar(WPR) in the low troposphere.

Strain Sensitivity of Fiber Optic Bragg Grating Sensor (광섬유 브래그 격자 센서의 변형률 감지도)

  • Kwon, Il-Bum;Choi, Man-Yong;Kim, Min-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.237-243
    • /
    • 1999
  • Recently, there has been considerable interest in the development of fiber-optic sensors based on fiber Bragg gratings (FBGs), which can be made into Ge-doped fiber's core by UV phase mask or holographic methods. A good sensitivity and small size of this sensor make it an ideal candidate for distributed sensing in smart structures or other structural monitoring applications. In this study, fiber optic Bragg grating sensor, which could be applied to measure the absolute strains, was constructed and the strain sensitivity of this sensor was investigated in order to apply to the structural health monitoring. Fiber Fabry-Perot (FFP) filter has been used to detect the optical signals instead of optical spectrum analyzer. It has been convenient to determine the structural strains from the output signal of FBGs. The fiber optic Bragg grating sensor was attached on the aluminum beam near the electrical strain gage to measure the same strain. The relationship between strain and fiber signal was linearly fitted. The strain sensitivity of the fiber optic Bragg grating sensor was determined as $l.57{\mu}{\varepsilon}/{\mu}sec$ from the aluminum beam test.

  • PDF

Cascaded Volume Bragg Grating for Narrow Spectral Linewidth in High-power Laser Diodes

  • Lee, Dong-Jin;Shim, Gyu-Beom;Jeong, Ji-Hun;O, Beom-Hoan
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.282-287
    • /
    • 2022
  • Narrowing the spectral linewidth and improving the wavelength stability of high-power laser diodes (HPLDs) are both in high demand for rapidly maturing industrial laser applications. In this study, we investigate the spectral behavior of a commercial HPLD bar module composed of 19 laser diodes (LDs) in a single-layered bar with a built-in volume Bragg grating (VBG) and an additional cascaded VBG. Optical loss due to the extra cascaded VBG is kept below 5% when the optical output is 5 W or more. The full width at half maximum of the Fabry-Perot peak from the cascaded VBG is reduced to about 12.4% and 29.1% at the edge (1st LD) and center (10th LD) of the HPLD bar module respectively, compared to using only a built-in VBG at an optical power of 10 W or more. In addition, fine wavelength tuning is achieved by temperature control of the extra VBG, and the obtained wavelength-tuning range amounts to about 10.6 pm/K.

Experimental Investigation of a High-repetition-rate Pr3+:YLF Laser with Single-frequency Oscillation

  • Dai, Weicheng;Jin, Long;Dong, Yuan;Jin, Guangyong
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.721-729
    • /
    • 2021
  • We demonstrate a Pr3+:YLF 639.7-nm laser with single-frequency output based on the Q-switched pre-lase technology, pumped by a fiber-coupled GaN blue laser diode. The pre-lase technology is realized by the step-type loss of the acousto-optical Q-switched device. The conclusions of the theoretical research are verified experimentally. The mode-suppression ratio was 44 dB at the single-frequency laser output. Detection by interferometer verified the realization of the stable single-frequency laser. In addition, the emission spectrum had a linewidth of 139.9 MHz, measured by Fabry-Perot interferometer. The single-frequency laser's single-peak power was over 19.7 W with 98.8-ns pulse duration, obtained under an absorption power of 1.74 W.