• Title/Summary/Keyword: f-electron magnetism

Search Result 8, Processing Time 0.019 seconds

Ionospheric F2-layer Perturbations Observed After the M8.8 Chile Earthquake on February 27, 2010, at Long Distance from the Epicenter

  • Hegai, Valery V.;Kim, Vitaly P.;Legen'ka, Anna D.
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • The F2-layer critical frequency (foF2) data from several ionosondes are employed to study the long-distance effect of the M8.8 Chile Earthquake of February 27, 2010, on the F2 layer. Significant perturbations of the peak F2-layer electron density have been observed following the earthquake at two South African stations, Hermanus and Madimbo, which are located at great circle distances of ~8,000 and ~10,000 km from the earthquake epicenter, respectively. Simplified estimates demonstrate that the observed ionospheric perturbations can be caused by a long-period acoustic gravity wave produced in the F-region by the earthquake.

Response of the Midlatitude F2 Layer to Some Strong Geomagnetic Storms during Solar Minimum as Observed at Four Sites of the Globe

  • Kim, Vitaly P.;Hegai, Valery V.
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.297-304
    • /
    • 2015
  • In this study, we documented the midlatitude F2-layer response to five strong geomagnetic storms with minimum Dst < -150 nT that occurred in solar minimum years using hourly values of the F2-layer critical frequency (foF2) from four ionosondes located in different hemispheres. The results were very limited, but they illustrated some peculiarities in the behavior of the F2-layer storm. During equinox, the characteristic ionospheric disturbance patterns over the Japanese station Wakkanai in the Northern Hemisphere and the Australian station Mundaring in the Southern Hemisphere were consistent with the well-known scenario by $Pr{\ddot{o}}lss$ (1993); however, during a December solstice magnetic storm, both stations did not observe any noticeable positive ionospheric disturbances. Over the "near-pole" European ionosonde, clear positive ionospheric storms were not observed during the events, but the "far-from-pole" Southern Hemisphere station Port Stanley showed prominent enhancements in F2-layer peak electron density in all magnetic storms except one. No event produced noticeable nighttime enhancements in foF2 over all four ionosondes.

Magnetic Interaction in FeCo Alloy Nanotube Array

  • Zhou, D.;Wang, T.;Zhu, M.G.;Guo, Z.H.;Li, W.;Li, F.S.
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.413-416
    • /
    • 2011
  • An array of FeCo nanotubes has been successfully fabricated in the pores of porous anodic aluminum oxide (AAO) templates by wetting templates method. The morphology and structure of the nanotube array were characterized by scanning electron microscopy, transmission electron microscopy and x-ray diffraction. The average diameter of the nanotubes was about 200 nm, and the length was more than 10 ${\mu}m$. Vibrating sample magnetometer and superconducting quantum interference device were used to investigate the magnetic properties of the nanotube array. Interaction between the nanotubes has been found to be demagnetizing as expected and the switching field distribution is broad.

f-electron Dualism as a Reason of Superconductivity in Ferromagnetic UGe2

  • Troc, Robert
    • Journal of Magnetics
    • /
    • v.9 no.3
    • /
    • pp.89-95
    • /
    • 2004
  • Magnetization and electrical resistivity measurements in the wide temperature and field ranges were performed on single crystals of $UGe_2$. The presence of extremely large anisotropy in the temperature dependence of the susceptibility and magnetization has confirmed the previously published results. The dependence of spontaneous magnetization, ${\sigma}_s$, on temperature has been inferred from the Arrot plot and compared to that determined from neutron diffraction data. The earlier transversal and present longitudinal results on the magnetoresistivity are discussed in the terms of possible f-electron dualism in $UGe_2$ and its connection with the occurrence of superconductivity under pressure in this compound.

Time-Varying Seismogenic Coulomb Electric Fields as a Probable Source for Pre-Earthquake Variation in the Ionospheric F2-Layer

  • Kim, Vitaly P.;Hegai, Valery V.;Liu, Jann Yenq;Ryu, Kwangsun;Chung, Jong-Kyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.251-256
    • /
    • 2017
  • The electric coupling between the lithosphere and the ionosphere is examined. The electric field is considered as a timevarying irregular vertical Coulomb field presumably produced on the Earth's surface before an earthquake within its epicentral zone by some micro-processes in the lithosphere. It is shown that the Fourier component of this electric field with a frequency of 500 Hz and a horizontal scale-size of 100 km produces in the nighttime ionosphere of high and middle latitudes a transverse electric field with a magnitude of ~20 mV/m if the peak value of the amplitude of this Fourier component is just 30 V/m. The time-varying vertical Coulomb field with a frequency of 500 Hz penetrates from the ground into the ionosphere by a factor of ${\sim}7{\times}10^5$ more efficient than a time independent vertical electrostatic field of the same scale size. The transverse electric field with amplitude of 20 mV/m will cause perturbations in the nighttime F region electron density through heating the F region plasma resulting in a reduction of the downward plasma flux from the protonosphere and an excitation of acoustic gravity waves.

Electronic Structures and Magnetism of the MgCFe3(001) Surface

  • Jin, Ying-Jiu;Kim, I. G.;Lee, J. I.
    • Journal of Magnetics
    • /
    • v.7 no.4
    • /
    • pp.132-137
    • /
    • 2002
  • The electronic structures and magnetism of the non-oxide perovskite MgCFe$_3$(001) surface were investigated by using the all-electron full-potential linearized augmented plane wave (FLAPW) method within the generalized gradient approximation (GGA). We considered both of the MgFe terminated (MgFe-Term) and the CFe terminated (CFe-Term) surfaces. We found that the minority spin d-bands of Fe(S) of the MgFe-Term are strongly localized and Fermi level (EF) lies just below the sharp peak of the minority spin d-band of Fe(S), while the minority spin d-bands of Fe(S) of the CFe-Term are not localized much and Fermi level (E$_F$) lies in the middle of two peaks of the minority spins. The majority Fe(S) d-band width of MgFe- Term is narrower than that of the CFe-Term. It is found that the magnetic moment of Fe(S) of the MgFe- Term is 2.51 ${\mu}$$_B$, which is much larger than that of 1.97 ${\mu}$$_B$ of the CFe-Term.

X-ray scattering study on the electric field-induced interfacial magnetic anisotropy modulation at CoFeB / MgO interfaces

  • Song, Kyung Mee;Kim, Dong-Ok;Kim, Jae-Sung;Lee, Dong Ryeol;Choi, Jun Woo
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1212-1217
    • /
    • 2018
  • The electric field-induced modifications of magnetic anisotropy in CoFeB/MgO systems are studied using X-ray resonant magnetic scattering and magneto-optical Kerr effect. Voltage dependent changes of the magnetic anisotropy of -12.7 fJ/Vm and -8.32 fJ/Vm are observed for Ta/CoFeB/MgO and Hf/CoFeB/MgO systems, respectively. This implies that the interfacial perpendicular magnetic anisotropy is reduced (enhanced) when electron density is increased (decreased). X-ray resonant magnetic scattering measurements reveal that the small in-plane magnetic component of the remanent state of CoFeB/MgO systems with weak magnetic anisotropy changes depending on the applied voltage leading to modification of the magnetic anisotropy at the CoFeB/MgO interface.

Effects of f Electrons on the Elastic Properties of Rare Earth Compounds (f 전자가 희토류 화합물의 탄성 성질에 미치는 영향)

  • Nahm, Kyun;You, Sang-Koo;Kim, Chul-Koo
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.5
    • /
    • pp.261-264
    • /
    • 2005
  • The elastic constants, C', of $Th_{3}P_4$-type structure compounds, $La_{3}S_4\;and\;Ce_{3}S_4$, have been analyzed on the basis of band Jahn-Teller mechanism. The distinct difference between two compounds lies in the fact that $Ce^{3+}$ ion has a f electron which produces magnetism. It is shown that the band Jahn-Teller effect is sensitively influenced by the energy splitting of f electronic bands by a cubic crystal field in $Ce_{3}S_4$, and f electrons suppress the elastic softening effect. The energy splitting value obtained from the calculation of elastic constants is found to agree well with the experimental value obtained from the magnetic susceptibility measurement.