Browse > Article
http://dx.doi.org/10.4283/JMAG.2011.16.4.413

Magnetic Interaction in FeCo Alloy Nanotube Array  

Zhou, D. (Division of Functional Materials, Central Iron & Steel Research Institute)
Wang, T. (Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University)
Zhu, M.G. (Division of Functional Materials, Central Iron & Steel Research Institute)
Guo, Z.H. (Division of Functional Materials, Central Iron & Steel Research Institute)
Li, W. (Division of Functional Materials, Central Iron & Steel Research Institute)
Li, F.S. (Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University)
Publication Information
Abstract
An array of FeCo nanotubes has been successfully fabricated in the pores of porous anodic aluminum oxide (AAO) templates by wetting templates method. The morphology and structure of the nanotube array were characterized by scanning electron microscopy, transmission electron microscopy and x-ray diffraction. The average diameter of the nanotubes was about 200 nm, and the length was more than 10 ${\mu}m$. Vibrating sample magnetometer and superconducting quantum interference device were used to investigate the magnetic properties of the nanotube array. Interaction between the nanotubes has been found to be demagnetizing as expected and the switching field distribution is broad.
Keywords
magnetic interaction; nanotube; FeCo alloy; switching field distribution;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 S. Khizroev, M. H. Kryder, D. Litvinov, and D. A. Thompson, Appl. Phys. Lett. 81, 2256 (2002).   DOI   ScienceOn
2 M. Zahn, J. Nanopart. Res. 3, 73 (2001).   DOI   ScienceOn
3 H. Riccardo, J. Appl. Phys. 90, 5752 (2001).   DOI   ScienceOn
4 P. E. Kelly, K. O. Grady, P. I. Mayo, and R. W. Chantrell, IEEE Trans. Magn. 25, 3881 (1989).   DOI   ScienceOn
5 M. J. Donahue and D. G. Porter, OOMMF User's Guide Version 1.2a3 (2002) (http://math.nist.gov/oommf).
6 M. Blanco-Mantecon and K. O. Grady, J. Magn. Magn. Mater. 296, 124 (2006).   DOI   ScienceOn
7 G. P. Heydon, S. R. Hoon, A. N. Farley, S. L. Tomlinson, M. S. Valera, K. Attenborough, and W. Schwarzacher, J. Phys. D: Appl. Phys. 30, 1083 (1997).   DOI   ScienceOn
8 G. F. Goya, T. S. Berquoand, and F. C. Fonseca, J. Appl. Phys. 94, 3520 (2003).   DOI   ScienceOn
9 A. Robinson and W. Schwarzacher, J. Appl. Phys. 93, 7250 (2003).   DOI   ScienceOn
10 E. P. Wohlfarth, J. Appl. Phys. 29, 595 (1958).
11 X. Y. Zhang, L. H. Xu, J. Y. Dai, and H. L. W. Chan, Physica B 353, 187 (2004).   DOI   ScienceOn
12 J.-R. Choi, S. J. Oh, H. Ju, and J. Cheon, Nano Letters 5, 2179 (2005).   DOI   ScienceOn
13 F. S. Li, T. Wang, L. Y. Ren, and J. R. Sun, J. Phys.: Condens. Matter 16, 8053 (2004).   DOI   ScienceOn
14 P. M. Paulus, F. Luis, M. Kroll, G. Schmid, and L. J. de Jongh, J. Magn. Magn. Mater. 224, 180 (2001).   DOI   ScienceOn
15 S. G. Yang, H. Zhu, D. L. Yu, Z. Q. Jin, S. L. Tang, and Y. W. Du, J. Magn. Magn. Mater. 222, 97 (2000).   DOI   ScienceOn
16 S. C. Lin, S. Y. Chen, S. Y. Cheng, and J. C. Lin, Solid State Sci. 7, 896 (2005).   DOI   ScienceOn
17 J. C. Bao, C. Y. Tie, Z. Xu, Q. F. Zhou, D. Shen, and Q. Ma, Adv. Mater. 13, 1631 (2001).   DOI   ScienceOn
18 Y. C. Sui, R. Skomski, K. D. Sorge, and D. J. Sellmyer, Appl. Phys. Lett. 84, 1525 (2004).   DOI   ScienceOn
19 P. Aranda and J. M. Garcia, J. Magn. Magn. Mater. 249, 214 (2002).   DOI   ScienceOn
20 K. Nielsch, F. J. Castano, S. Matthias, W. Lee, and C. A. Ross, Adv. Eng. Mater. 7, 217 (2005).   DOI   ScienceOn
21 F. S. Li, D. Zhou, T. Wang, Y. Wang, L. J. Song, and C. T. Xu, J. Appl. Phys. 101, 014309 (2007).   DOI   ScienceOn
22 D. Zhou, Z. W. Li, X, Yang, F. S. Wen, and F. S. Li, Chin. Phys. Lett. 25, 1865 (2008).   DOI   ScienceOn
23 R. Gasparac, P. Kohli, M. O. Mota, L. Trofin, and C. R. Martin, Nano Letters 4, 513 (2004).   DOI   ScienceOn