• Title/Summary/Keyword: eye tracking

Search Result 457, Processing Time 0.027 seconds

Technical-note : Real-time Evaluation System for Quantitative Dynamic Fitting during Pedaling (단신 : 페달링 시 정량적인 동적 피팅을 위한 실시간 평가 시스템)

  • Lee, Joo-Hack;Kang, Dong-Won;Bae, Jae-Hyuk;Shin, Yoon-Ho;Choi, Jin-Seung;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.2
    • /
    • pp.181-187
    • /
    • 2014
  • In this study, a real-time evaluation system for quantitative dynamic fitting during pedaling was developed. The system is consisted of LED markers, a digital camera connected to a computer and a marker detecting program. LED markers are attached to hip, knee, ankle joint and fifth metatarsal in the sagittal plane. Playstation3 eye which is selected as a main digital camera in this paper has many merits for using motion capture, such as high FPS (Frame per second) about 180FPS, $320{\times}240$ resolution, and low-cost with easy to use. The maker detecting program was made by using Labview2010 with Vision builder. The program was made up of three parts, image acquisition & processing, marker detection & joint angle calculation, and output section. The digital camera's image was acquired in 95FPS, and the program was set-up to measure the lower-joint angle in real-time, providing the user as a graph, and allowing to save it as a test file. The system was verified by pedalling at three saddle heights (knee angle: 25, 35, $45^{\circ}$) and three cadences (30, 60, 90 rpm) at each saddle heights by using Holmes method, a method of measuring lower limbs angle, to determine the saddle height. The result has shown low average error and strong correlation of the system, respectively, $1.18{\pm}0.44^{\circ}$, $0.99{\pm}0.01^{\circ}$. There was little error due to the changes in the saddle height but absolute error occurred by cadence. Considering the average error is approximately $1^{\circ}$, it is a suitable system for quantitative dynamic fitting evaluation. It is necessary to decrease error by using two digital camera with frontal and sagittal plane in future study.

Patrol Monitoring Plan for Transmission Towers with a Commercial Drone and its Field Tests (상용화 드론을 이용한 송전선로 점검방안 및 현장시험)

  • Kim, Seok-Tae;Park, Joon-Young;Lee, Jae-Kyung;Ham, Ji-Wan;Choi, Min-Hee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.115-123
    • /
    • 2018
  • Various types of robots running on power transmission lines have been developed for the purpose of line patrol monitoring. They usually have complex mechanism to run and avoid obstacles on the power line, but nevertheless did not show satisfactory performance for going over the obstacles. Moreover, they were so heavy that they could not be easily installed on the lines. To compensate these problems, flying robots have been developed and recently, multi-copter drones with flight stability have been used in the electric power industry. The drones could be remotely controlled by human operators to monitor power distribution lines. In the case of transmission line patrol, however, transmission towers are huge and their spans are very long, and thus, it is very difficult for the pilot to control the patrol drones with the naked eye from a long distance away. This means that the risk of a drone crash onto electric power facilities always resides. In addition, there exists another danger of electromagnetic interference with the drones on autopilot waypoint tracking under ultra-high voltage environments. This paper presents a patrol monitoring plan of autopilot drones for power transmission lines and its field tests. First, the magnetic field effect on an autopilot patrol drone is investigated. Then, how to build the flight path to avoid the magnetic interference is proposed and our autopilot drone system is introduced. Finally, the effectiveness of the proposed patrol plan is confirmed through its field test results in the 154 kV, 345 kV and 765 kV transmission lines in Chungcheongnam-do.

Saliency Attention Method for Salient Object Detection Based on Deep Learning (딥러닝 기반의 돌출 객체 검출을 위한 Saliency Attention 방법)

  • Kim, Hoi-Jun;Lee, Sang-Hun;Han, Hyun Ho;Kim, Jin-Soo
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.39-47
    • /
    • 2020
  • In this paper, we proposed a deep learning-based detection method using Saliency Attention to detect salient objects in images. The salient object detection separates the object where the human eye is focused from the background, and determines the highly relevant part of the image. It is usefully used in various fields such as object tracking, detection, and recognition. Existing deep learning-based methods are mostly Autoencoder structures, and many feature losses occur in encoders that compress and extract features and decoders that decompress and extend the extracted features. These losses cause the salient object area to be lost or detect the background as an object. In the proposed method, Saliency Attention is proposed to reduce the feature loss and suppress the background region in the Autoencoder structure. The influence of the feature values was determined using the ELU activation function, and Attention was performed on the feature values in the normalized negative and positive regions, respectively. Through this Attention method, the background area was suppressed and the projected object area was emphasized. Experimental results showed improved detection results compared to existing deep learning methods.

Experience Design Guideline for Smart Car Interface (스마트카의 인터페이스를 위한 경험 디자인 가이드라인)

  • Yoo, Hoon Sik;Ju, Da Young
    • Design Convergence Study
    • /
    • v.15 no.1
    • /
    • pp.135-150
    • /
    • 2016
  • Due to the development of communication technology and expansion of Intelligent Transport System (ITS), the car is changing from a simple mechanical device to second living space which has comprehensive convenience function and is evolved into the platform which is playing as an interface for this role. As the interface area to provide various information to the passenger is being expanded, the research importance about smart car based user experience is rising. This study has a research objective to propose the guidelines regarding the smart car user experience elements. In order to conduct this study, smart car user experience elements were defined as function, interaction, and surface and through the discussions of UX/UI experts, 8 representative techniques, 14 representative techniques, and 8 locations of the glass windows were specified for each element. Following, the smart car users' priorities of the experience elements, which were defined through targeting 100 drivers, were analyzed in the form of questionnaire survey. The analysis showed that the users' priorities in applying the main techniques were in the order of safety, distance, and sensibility. The priorities of the production method were in the order of voice recognition, touch, gesture, physical button, and eye tracking. Furthermore, regarding the glass window locations, users prioritized the front of the driver's seat to the back. According to the demographic analysis on gender, there were no significant differences except for two functions. Therefore this showed that the guidelines of male and female can be commonly applied. Through user requirement analysis about individual elements, this study provides the guides about the requirement in each element to be applied to commercialized product with priority.

A Model for Constructing Learner Data in AI-based Mathematical Digital Textbooks for Individual Customized Learning (개별 맞춤형 학습을 위한 인공지능(AI) 기반 수학 디지털교과서의 학습자 데이터 구축 모델)

  • Lee, Hwayoung
    • Education of Primary School Mathematics
    • /
    • v.26 no.4
    • /
    • pp.333-348
    • /
    • 2023
  • Clear analysis and diagnosis of various characteristic factors of individual students is the most important in order to realize individual customized teaching and learning, which is considered the most essential function of math artificial intelligence-based digital textbooks. In this study, analysis factors and tools for individual customized learning diagnosis and construction models for data collection and analysis were derived from mathematical AI digital textbooks. To this end, according to the Ministry of Education's recent plan to apply AI digital textbooks, the demand for AI digital textbooks in mathematics, personalized learning and prior research on data for it, and factors for learner analysis in mathematics digital platforms were reviewed. As a result of the study, the researcher summarized the factors for learning analysis as factors for learning readiness, process and performance, achievement, weakness, and propensity analysis as factors for learning duration, problem solving time, concentration, math learning habits, and emotional analysis as factors for confidence, interest, anxiety, learning motivation, value perception, and attitude analysis as factors for learning analysis. In addition, the researcher proposed noon data on the problem, learning progress rate, screen recording data on student activities, event data, eye tracking device, and self-response questionnaires as data collection tools for these factors. Finally, a data collection model was proposed that time-series these factors before, during, and after learning.

Recognition of Resident Registration Card using ART2-based RBF Network and face Verification (ART2 기반 RBF 네트워크와 얼굴 인증을 이용한 주민등록증 인식)

  • Kim Kwang-Baek;Kim Young-Ju
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.1-15
    • /
    • 2006
  • In Korea, a resident registration card has various personal information such as a present address, a resident registration number, a face picture and a fingerprint. A plastic-type resident card currently used is easy to forge or alter and tricks of forgery grow to be high-degree as time goes on. So, whether a resident card is forged or not is difficult to judge by only an examination with the naked eye. This paper proposed an automatic recognition method of a resident card which recognizes a resident registration number by using a refined ART2-based RBF network newly proposed and authenticates a face picture by a template image matching method. The proposed method, first, extracts areas including a resident registration number and the date of issue from a resident card image by applying Sobel masking, median filtering and horizontal smearing operations to the image in turn. To improve the extraction of individual codes from extracted areas, the original image is binarized by using a high-frequency passing filter and CDM masking is applied to the binaried image fur making image information of individual codes better. Lastly, individual codes, which are targets of recognition, are extracted by applying 4-directional contour tracking algorithm to extracted areas in the binarized image. And this paper proposed a refined ART2-based RBF network to recognize individual codes, which applies ART2 as the loaming structure of the middle layer and dynamicaly adjusts a teaming rate in the teaming of the middle and the output layers by using a fuzzy control method to improve the performance of teaming. Also, for the precise judgement of forgey of a resident card, the proposed method supports a face authentication by using a face template database and a template image matching method. For performance evaluation of the proposed method, this paper maked metamorphoses of an original image of resident card such as a forgey of face picture, an addition of noise, variations of contrast variations of intensity and image blurring, and applied these images with original images to experiments. The results of experiment showed that the proposed method is excellent in the recognition of individual codes and the face authentication fur the automatic recognition of a resident card.

  • PDF

A Store Recommendation Procedure in Ubiquitous Market for User Privacy (U-마켓에서의 사용자 정보보호를 위한 매장 추천방법)

  • Kim, Jae-Kyeong;Chae, Kyung-Hee;Gu, Ja-Chul
    • Asia pacific journal of information systems
    • /
    • v.18 no.3
    • /
    • pp.123-145
    • /
    • 2008
  • Recently, as the information communication technology develops, the discussion regarding the ubiquitous environment is occurring in diverse perspectives. Ubiquitous environment is an environment that could transfer data through networks regardless of the physical space, virtual space, time or location. In order to realize the ubiquitous environment, the Pervasive Sensing technology that enables the recognition of users' data without the border between physical and virtual space is required. In addition, the latest and diversified technologies such as Context-Awareness technology are necessary to construct the context around the user by sharing the data accessed through the Pervasive Sensing technology and linkage technology that is to prevent information loss through the wired, wireless networking and database. Especially, Pervasive Sensing technology is taken as an essential technology that enables user oriented services by recognizing the needs of the users even before the users inquire. There are lots of characteristics of ubiquitous environment through the technologies mentioned above such as ubiquity, abundance of data, mutuality, high information density, individualization and customization. Among them, information density directs the accessible amount and quality of the information and it is stored in bulk with ensured quality through Pervasive Sensing technology. Using this, in the companies, the personalized contents(or information) providing became possible for a target customer. Most of all, there are an increasing number of researches with respect to recommender systems that provide what customers need even when the customers do not explicitly ask something for their needs. Recommender systems are well renowned for its affirmative effect that enlarges the selling opportunities and reduces the searching cost of customers since it finds and provides information according to the customers' traits and preference in advance, in a commerce environment. Recommender systems have proved its usability through several methodologies and experiments conducted upon many different fields from the mid-1990s. Most of the researches related with the recommender systems until now take the products or information of internet or mobile context as its object, but there is not enough research concerned with recommending adequate store to customers in a ubiquitous environment. It is possible to track customers' behaviors in a ubiquitous environment, the same way it is implemented in an online market space even when customers are purchasing in an offline marketplace. Unlike existing internet space, in ubiquitous environment, the interest toward the stores is increasing that provides information according to the traffic line of the customers. In other words, the same product can be purchased in several different stores and the preferred store can be different from the customers by personal preference such as traffic line between stores, location, atmosphere, quality, and price. Krulwich(1997) has developed Lifestyle Finder which recommends a product and a store by using the demographical information and purchasing information generated in the internet commerce. Also, Fano(1998) has created a Shopper's Eye which is an information proving system. The information regarding the closest store from the customers' present location is shown when the customer has sent a to-buy list, Sadeh(2003) developed MyCampus that recommends appropriate information and a store in accordance with the schedule saved in a customers' mobile. Moreover, Keegan and O'Hare(2004) came up with EasiShop that provides the suitable tore information including price, after service, and accessibility after analyzing the to-buy list and the current location of customers. However, Krulwich(1997) does not indicate the characteristics of physical space based on the online commerce context and Keegan and O'Hare(2004) only provides information about store related to a product, while Fano(1998) does not fully consider the relationship between the preference toward the stores and the store itself. The most recent research by Sedah(2003), experimented on campus by suggesting recommender systems that reflect situation and preference information besides the characteristics of the physical space. Yet, there is a potential problem since the researches are based on location and preference information of customers which is connected to the invasion of privacy. The primary beginning point of controversy is an invasion of privacy and individual information in a ubiquitous environment according to researches conducted by Al-Muhtadi(2002), Beresford and Stajano(2003), and Ren(2006). Additionally, individuals want to be left anonymous to protect their own personal information, mentioned in Srivastava(2000). Therefore, in this paper, we suggest a methodology to recommend stores in U-market on the basis of ubiquitous environment not using personal information in order to protect individual information and privacy. The main idea behind our suggested methodology is based on Feature Matrices model (FM model, Shahabi and Banaei-Kashani, 2003) that uses clusters of customers' similar transaction data, which is similar to the Collaborative Filtering. However unlike Collaborative Filtering, this methodology overcomes the problems of personal information and privacy since it is not aware of the customer, exactly who they are, The methodology is compared with single trait model(vector model) such as visitor logs, while looking at the actual improvements of the recommendation when the context information is used. It is not easy to find real U-market data, so we experimented with factual data from a real department store with context information. The recommendation procedure of U-market proposed in this paper is divided into four major phases. First phase is collecting and preprocessing data for analysis of shopping patterns of customers. The traits of shopping patterns are expressed as feature matrices of N dimension. On second phase, the similar shopping patterns are grouped into clusters and the representative pattern of each cluster is derived. The distance between shopping patterns is calculated by Projected Pure Euclidean Distance (Shahabi and Banaei-Kashani, 2003). Third phase finds a representative pattern that is similar to a target customer, and at the same time, the shopping information of the customer is traced and saved dynamically. Fourth, the next store is recommended based on the physical distance between stores of representative patterns and the present location of target customer. In this research, we have evaluated the accuracy of recommendation method based on a factual data derived from a department store. There are technological difficulties of tracking on a real-time basis so we extracted purchasing related information and we added on context information on each transaction. As a result, recommendation based on FM model that applies purchasing and context information is more stable and accurate compared to that of vector model. Additionally, we could find more precise recommendation result as more shopping information is accumulated. Realistically, because of the limitation of ubiquitous environment realization, we were not able to reflect on all different kinds of context but more explicit analysis is expected to be attainable in the future after practical system is embodied.