• 제목/요약/키워드: extrusion failure

검색결과 47건 처리시간 0.034초

치관-치근 파절이 발생한 상악 중절치를 수복하기 위한 다각적 접근법: 교정적 정출술과 외과적 정출술 (A multidisciplinary approach to restore crown-root fractured maxillary central incisors: orthodontic extrusion and surgical extrusion)

  • 권은영;김소연;정경화;최윤경;김현주;주지영
    • 구강회복응용과학지
    • /
    • 제36권4호
    • /
    • pp.262-271
    • /
    • 2020
  • 변연골 하방으로까지 파절선이 연장된 치아를 수복하기 위해 파절선의 노출 및 생물학적 폭경의 재확립을 위한 삭제형 골수술을 동반한 외과적 치관 연장술을 고려해 볼 수 있다. 그러나 이 술식은 특히 전치부에서 심미성을 훼손시킬 수 있다. 따라서 지지골과 치은을 희생시키지 않으면서 파절선을 치조와 하방에서 상방으로 위치 시킬 수 있는 교정적 정출술이 권장된다. 이 술식은 생물학적 폭경의 재확립과 더불어 수복물을 건전한 치아 구조에 위치할 수 있도록 해 준다. 또 다른 대안으로, 교정적 정출술 보다 방법이 간단하며 시간이 적게 소요되고 한번의 술식만으로 정출이 완료되는 외과적 정출술도 고려해 볼 수 있다. 외과적 정출술을 이용할 경우 구강내 교정 장치를 위치시키고 조정하기 위해 환자가 치과에 여러번 방문할 필요가 없다. 본 연구에서는 상악 중절치에서 치관-치근 파절이 발생한 경우 교정적 정출술 또는 외과적 정출술을 통한 다각적 방법을 병용함으로써 성공적으로 수복한 증례를 보고하고자 한다.

Experimental research on the failure mechanism of foam concrete with C-Channel embedment

  • Liu, Dianzhong;Wang, Fayu;Fu, Feng;Wang, He
    • Computers and Concrete
    • /
    • 제20권3호
    • /
    • pp.263-273
    • /
    • 2017
  • An experimental investigation is carried out on the failure mechanism of foam concrete with cold formed steel double C-Channels embedment. The foam concrete is made of cement and fly ash with a compressive strength between 9 and 24 MPa with different densities. Forty-eight tests have been carried out in four groups of specimens with various embedment depths of the steel in the concrete. Four modes of failure are observed, which include the independent failure of the C-Channels with and without a concrete block inside the channel as well as the combined failure of the two channels, and the failure of the extrusion block. A theoretical model has been developed to understand the failure process. The peak compressive force applied onto the C-Channels that causes failure is calculated. It is concluded that the failure involves independent slippage between two C-Channels, and the steel and the foam concrete blocks inside the C-Channels. A method to calculate the peak force is also developed based on the test results. The calculations also show that the shear strength of the foam concrete is about 8% of the compressive strength with ${\alpha}$ coefficient of 0.4 between the steel and concrete.

다접오링의 밀봉특성 해석에 관한 연구 (A Study on the Sealing Characteristics of Multi-contact O-rings)

  • 김청균
    • 한국가스학회지
    • /
    • 제16권5호
    • /
    • pp.52-57
    • /
    • 2012
  • 본 연구에서는 유한요소해석법을 사용하여 다접오링의 밀봉특성에 관련된 변형률, 응력, 접촉법선응력을 해석하였다. 밀봉특성에 관한 FEM 해석결과에 의하면, 다접오링에 작용하는 최대 변형률, 최대압축응력, 최대접촉 법선응력은 기존의 오링에 비해 약 1.7배나 더 높게 나타났다. 이것은 다접오링의 절단면에 U홈을 형성하였기 때문이고, 다접오링은 고압가스 용기, 밸브, 가스기기의 밀봉을 유지하는데 매우 유용할 것으로 판단된다. 그리고, 다접오링에서 가스압력을 높여도 압출파손 현상이 발생되지 않았는데, 이것은 U홈이 있기 때문인 것으로 판단된다. 따라서, 다접오링은 기존의 오링에 비해 밀봉수명을 길게 연장시킬 수 있다.

축대칭 압출 및 인발공정 중의 금형마멸예측 (Prediction of Die Wear in Extrusion and Wire Drawing)

  • 김태형;김병민;최재찬
    • 대한기계학회논문집A
    • /
    • 제20권10호
    • /
    • pp.3031-3037
    • /
    • 1996
  • In cold forming processes, due to high working pressure action on the die surface, failure mechanics must be considered before die design. One of the main reasons of die failure in industrial application of metal forming technologies is wear. Die wear affects the tolerances of formed parts, metal flow and costs of process etc. The only way to control these failures into devlop methods which allow prediction of die wear and which are suited to be used in the design state in order to optimize the process. In this paper, the forming propcesses that involve cold forward extrusion and wire drawing were simulated by rigid plastic finite element method and its output were used for predicting die wear by Archard wear model. The simulation results were compared with the measured worn dies.

노후된 알루미늄 압출기의 재제조 기술 개발 및 성능 개선 (Development and Performance Improvement of old Aluminum Extruder Remanufacturing Technology)

  • 윤상민;정항철;공만식
    • 한국산업융합학회 논문집
    • /
    • 제26권1호
    • /
    • pp.95-103
    • /
    • 2023
  • The domestic remanufacturing industry is concentrated in auto parts, so it is necessary to expand into various industries. In the domestic aluminum industry, the extrusion process accounts for more than 40% of the total, but the old and management of the extrusion equipment is not done properly. In particular, the extruder has a structure in which equipment is not replaced until major parts are damaged or worn, so there are problems such as lower process precision, productivity and production efficiency compared to new equipment, and high maintenance costs. In this study, the old extruder was remanufactured for major high-risk parts through Failure Mode and Effect Analysis(FMEA), and the process level and performance of the extruder were evaluated before and after remanufacturing. Compared to the existing extruder, the standard deviation of the remanufacture extruder was reduced by 93.5%, 57.9%, and 70.0%, respectively, in major process control items such as container temperature, billet temperature, and ram speed, keeping performance constant. In addition, it was possible to produce products with complex shapes that could not be produced before due to problems such as dimensional deviation within tolerances. In this study, remanufacturing guidelines were presented by analyzing the effect of failure modes of the old extruder, and the performance improvement of the extruder was confirmed.

연성파괴모델의 유한요소법을 이용한 하이드로포밍공정에의 성형한계 예측 (Prediction of Forming Limit in Hydroforming Processes by Using Finite Element Method and Ductile Fracture Criterion)

  • 김대환;뇌여평;강범수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.230-235
    • /
    • 2000
  • By using the finite element method, the Oyane's ductile fracture integral I was calculated from the histories of stress and strain according to every element and then the forming limit of hydroforming process could be evaluated. The fracture initiation site and the forming limit fer two typical hydroforming processes, tee extrusion and bumper rail under different forming conditions are predicted in this study. For tee extrusion hydroforming process, the pressure level has significant influence on the forming limit. When the expansion area is backed by a supporter and bulged, the process would be more stable and the possibility of bursting failure is reduced. For bumper rail, the ductile fracture integral I is not only affected by the process parameters, but also by the shape of preforming blank. Due to no axial feeding on the end side of the blank, the possibility of cracking in hydroforming of the bumper rail is influenced by the friction condition more strongly than that of the tee extrusion. All the simulation results show reasonable plastic deformation, and the applications of the method could be extended to a wide range of hydroforming processes.

  • PDF

압출/단조 금형의 취성결함성장예측 (Prediction of the Brittle Damage Evolution in Extrusion/Forging Die)

  • 여은구;이용신;나경환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.220-223
    • /
    • 1998
  • The failure of die often occurs as a result of growth of microcracks - referred as a brittle damage. In this study, an analysis of brittle damage evolution cupled with elastic finite element analysis of die deformation is presented. A local transformation from the tractions of a workpiece mesh to those of a die mesh is developed. The brittle damage is defined as a vector considering the shape of common microcracks in the brittle metals and the damage function suggested by Krajcinovic is utillized. Applications of the proposed model to modeling damage evolution in the extrusion die and forging die are given and the characteristics of brittle damage evolution in die are in detail examined.

  • PDF

Amino Silane, Vinyl Silane, TESPD, ZS(TESPD/Zinc Complex) Effects on Carbon Black/Clay Filled Chlorobutyl Rubber(CIIR) Compounds Part I: Effects on Hard Clay/Carbon Black Filled Compounds

  • Kim, Kwang-Jea
    • Carbon letters
    • /
    • 제10권2호
    • /
    • pp.101-108
    • /
    • 2009
  • Various silanes, amino silane, vinyl silane, TESPD, and ZS (TESPD/zinc soap complex), are added into chlorinated isobutylene-isoprene copolymer (CIIR)/hard clay/carbon black (CB) compound and they are investigated with respect to the vulcanization characteristics, the processability, and the mechanical properties. In hard clay/CB filled system, only ZS silane added compound shows both lower Mooney viscosity and extrusion torque while vinyl silane added compound showed only a lower extrusion torque. All the ZS added compounds showed the lowest viscosity among them. The silane added compounds showed an increased modulus. In 'fatigue to failure' count test, the ZS added compound showed superior counts compared to other silane (amino, vinyl, TESPD) added compounds. The mechanical properties were significantly increased when the S2 and ZS were added into CIIR/hard clay/CB compound. The ZS added compounds showed a significant improvement on elongation modulus.

Effect of material mechanical differences on shear properties of contact zone composite samples: Experimental and numerical studies

  • Wang, Weiqi;Ye, Yicheng;Wang, Qihu;Liu, Xiaoyun;Yang, Fan;Tan, Wenkan
    • Structural Engineering and Mechanics
    • /
    • 제76권2호
    • /
    • pp.153-162
    • /
    • 2020
  • Aiming at the mechanical and structural characteristics of the contact zone composite rock, the shear tests and numerical studies were carried out. The effects of the differences in mechanical properties of different materials and the normal stress on shear properties of contact zone composite samples were analyzed from a macro-meso level. The results show that the composite samples have high shear strength, and the interface of different materials has strong adhesion. The differences in mechanical properties of materials weakens the shear strength and increase the shear brittleness of the sample, while normal stress will inhibit these effect. Under low/high normal stress, the sample show two failure modes, at the meso-damage level: elastic-shearing-frictional sliding and elastic-extrusion wear. This is mainly controlled by the contact and friction state of the material after damage. The secondary failure of undulating structure under normal-shear stress is the nature of extrusion wear, which is positively correlated to the normal stress and the degree of difference in mechanical properties of different materials. The increase of the mechanical difference of the sample will enhance the shear brittleness under lower normal stress and the shear interaction under higher normal stress.

A modified technique for extraoral cementation of implant retained restorations for preventing excess cement around the margins

  • Yuzbasioglu, Emir
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권2호
    • /
    • pp.146-149
    • /
    • 2014
  • The major drawback of cement-retained restorations is the extrusion of the excess cement into the peri-implant sulcus, with subsequent complications. Insufficient removal of the excess cement may initiate a local inflammatory process, which may lead to implant failure. This article presents a method of controlling cement flow on implant abutments, minimizing the excess cement around implant-retained restorations.