• Title/Summary/Keyword: extrinsic apoptosis

Search Result 99, Processing Time 0.024 seconds

Drugs from Marine Sources: Modulation of TRAIL Induced Apoptosis in Cancer Cells

  • Farooqi, Ammad Ahmad;Attar, Rukset;Gasparri, Maria Luisa
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권20호
    • /
    • pp.9045-9047
    • /
    • 2014
  • There have been overwhelming advances in molecular oncology and data obtained through high-throughput technologies have started to shed light on wide ranging molecular mechanisms that underpin cancer progression. Increasingly it is being realized that marine micro-organisms and the biodiversity of plankton are rich sources of various anticancer compounds. Marine derived compounds play major roles in inducing apoptosis in cancer cells. More importantly, various agents have been noted to enhance TRAIL induced apoptosis in cancer cells by functionalizing intrinsic and extrinsic pathways. In this commentary, a list of marine derived compounds reported to induce apoptosis is discussed.

Reactive oxygen species-dependent apoptosis induction by water extract of Citrus unshiu peel in MDA-MB-231 human breast carcinoma cells

  • Kim, Min Yeong;Choi, Eun Ok;HwangBo, Hyun;Kwon, Da He;Ahn, Kyu Im;Kim, Hong Jae;Ji, Seon Yeong;Hong, Su-Hyun;Jeong, Jin-Woo;Kim, Gi Young;Park, Cheol;Choi, Yung Hyun
    • Nutrition Research and Practice
    • /
    • 제12권2호
    • /
    • pp.129-134
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Although several recent studies have reported the anti-cancer effects of extracts or components of Citrus unshiu peel, which has been used for various purposes in traditional medicine, the molecular mechanisms for their effects remain unclear. In the present study, the anti-cancer activity of a water-soluble extract of C. unshiu peel (WECU) in MDA-MB-231 human breast carcinoma cells at the level of apoptosis induction was investigated. MATERIALS/METHODS: Cytotoxicity was evaluated using the MTT assay. Apoptosis was detected using DAPI staining and flow cytometry analyses. Mitochondrial membrane potential, reactive oxygen species (ROS) assay, caspase activity and Western blotting were used to confirm the basis of apoptosis. RESULTS: The results indicated that WECU-induced apoptosis was related to the activation of caspase-8, and -9, representative initiator caspases of extrinsic and intrinsic apoptosis pathways, respectively, and caspase-3 accompanied by proteolytic degradation of poly(ADP-ribose) polymerase and down-regulation of the inhibitors of apoptosis protein family members. WECU also increased the pro-apoptotic BAX to anti-apoptotic BCL-2 ratio, loss of mitochondrial membrane potential and cytochrome c release from mitochondria to cytoplasm. Furthermore, WECU provoked the generation of ROS, but the reduction of cell viability and induction of apoptosis by WECU were prevented when ROS production was blocked by antioxidant N-acetyl cysteine. CONCLUSIONS: These results suggest that WECU suppressed proliferation of MDA-MB-231 cells by activating extrinsic and intrinsic apoptosis pathways in a ROS-dependent manner.

Sensitization of 5-Fluorouracil-Resistant SNUC5 Colon Cancer Cells to Apoptosis by α-Mangostin

  • Lee, June;Kang, Jong-Su;Choi, Bu-Young;Keum, Young-Sam
    • Biomolecules & Therapeutics
    • /
    • 제24권6호
    • /
    • pp.604-609
    • /
    • 2016
  • 5-fluorouracil (5-FU) is a chemotherapeutic agent commonly used for treatment of solid tumors, including colorectal cancer. However, chemoresistance against 5-fluorouracil (5-FU) often limits its success for chemotherapy and, therefore, finding out appropriate adjuvant(s) that might overcome chemoresistance against 5-FU bears a significant importance. In the present study, we have found that ${\alpha}$-mangostin can sensitize 5-FU-resistant SNUC5/5-FUR colon cancer cells to apoptosis. Exposure of ${\alpha}$-mangostin induced significant DNA damages and increased the intracellular 8-hydroxyguanosine (8-OH-G) and 4-hydroxynonenal (4-HNE) levels in SNUC5 and SNUC5/5-FUR cells. Western blot analysis illustrated that ${\alpha}$-mangostin-induced apoptosis was mediated by the activation of the extrinsic and intrinsic pathways in SNUC5/5-FUR cells. In particular, we observed that Fas receptor (FasR) level was lower in SNUC5/5-FUR cells, compared with SNUC5 cells and that silencing FasR attenuated ${\alpha}$-mangostin-mediated apoptosis in SNUC5/5-FUR cells. Together, our study illustrates that ${\alpha}$-mangostin might be an efficient apoptosis sensitizer that can overcome chemoresistance against 5-FU by activating apoptosis pathway.

결장암세포에서 sanguinarine에 의한 종양억제 유전자 p53 의존적 apoptosis 유도 (Induction of Tumor Suppressor Gene p53-dependent Apoptosis by Sanguinarine in HCT116 Human Colorectal Cancer Cells)

  • 최영현
    • 생명과학회지
    • /
    • 제31권4호
    • /
    • pp.400-409
    • /
    • 2021
  • 천연 benzophenanthridine alkaloid의 일종인 sanguinarine에 의한 인간 암세포에서의 세포사멸 유도는 암 치료를 위한 잠재적 치료 가능성으로 여겨져 왔으나 기본적인 항암 기전은 여전히 불분명하다. 종양 억제제 p53의 결실 또는 돌연변이는 결장암세포의 항암제 내성에 대한 주요 원인으로 작용하다. 따라서, 본 연구에서는 정상 p53을 가진 HCT116 (p53+/+) 및 p53이 결여된 HCT116 (p53-/-) 결장암세포를 대상으로 sanguinarine에 의해 유도되는 세포사멸에서 p53의 역할을 조사하였다. 본 연구의 결과에 의하면, sanguinarine은 HCT116 (p53-/-) 세포에 비하여 HCT116 (p53+/+) 세포의 생존력을 현저히 감소시켰다. 아울러 sanguinarine은 HCT116 (p53-/-) 세포보다 HCT116 (p53+/+) 세포에서 p53 및 cyclin-dependent kinase 억제제 p21WAF1/CIP1의 발현을 증가시키면서 DNA 손상 및 세포사멸의 유도를 증가시켰다. Sanguinarine은 HCT116 (p53+/+) 세포에서 외인성 및 내인성 세포사멸의 개시에 관여하는 caspase-8 및 caspase-9의 활성을 증가시켰으며, 전형적인 효과기 caspase인 caspase-3을 활성화시켰다. 또한, sanguinarine은 HCT116 (p53+/+) 세포에서 Bax/Bcl-2의 발현 비율을 증가시키고 미토콘드리아 손상을 유발하였지만, HCT116 (p53-/-) 세포에서는 이러한 현상이 관찰되지 않았다. 결론적으로 본 연구의 결과는 sanguinarine은 HCT116 결장암세포에서 p53 의존적으로 외인성 및 내인성 세포사멸의 경로 활성을 통하여 세포사멸을 유도하였음을 의미한다.

핵산합성 억제제인 decitabine과 NF-κB 활성 저해제인 PDTC의 병용 처리에 의한 인체 위암세포사멸 효과 증진 (Increased Apoptotic Efficacy of Decitabine in Combination with an NF-kappaB Inhibitor in Human Gastric Cancer AGS Cells)

  • 최원경;최영현
    • 생명과학회지
    • /
    • 제28권11호
    • /
    • pp.1268-1276
    • /
    • 2018
  • Cytidine analog decitabine (DEC)은 핵산 합성의 억제제로서 골수이형성 증후군 및 급성 골수성 백혈병 치료제로 사용되고 있다. 산화질소 합성에서 번역 단계를 억제하는 것으로 알려진 ammonium pyrrolidine dithiocarbamate (PDTC)는 $NF-{\kappa}B$의 대표적인 억제제이다. 본 연구에서는 인체 위암 AGS 세포를 대상으로 DEC와 PDTC의 병용 처리에 따른 세포증식 억제 기전을 조사하였다. 본 연구의 결과에 따르면 PDTC에 의한 AGS 세포의 증식 억제 효과는 DEC에 의해 농도 의존적으로 유의하게 증가하였으며, 이는 G2/M기의 세포주기 정지 및 apoptosis 유도와 관련이 있었다. PDTC와 DEC의 병용 처리에 의한 세포 사멸의 유도는 DNA 손상 유도와 관련이 있음을 H2AX의 인산화 증가로 확인하였다. 아울러 PDTC와 DEC의 병용 처리는 미토콘드리아 막 전위의 파괴를 유도하고, 세포 내 활성산소종(ROS)의 생성과 Bax의 발현을 향상시키고, Bcl-2 발현을 감소시켰으며 미토콘드리아에서 세포질로의 cytochrome c 유출을 증가시켰다. 또한 PDTC과 DEC의 병용 처리는 외인성 및 내인성 apoptosis 개시 caspase에 해당하는 caspase-8과 caspase-9의 활성뿐만 아니라 caspase-3의 활성화와 PARP 단백질의 분해를 유도하였다. 결론적으로 본 연구의 결과는 PDTC와 DEC의 병용 처리가 DNA 손상을 유발하고, ROS 증가와 연계된 외인성 및 내인성 apoptosis 사멸 경로를 활성화시킴으로써 AGS 세포의 증식을 억제하였음을 의미한다.

Apoptosis Induction in Human Leukemic Promyelocytic HL-60 and Monocytic U937 Cell Lines by Goniothalamin

  • Petsophonsakul, Ploingarm;Pompimon, Wilart;Banjerdpongchai, Ratana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권5호
    • /
    • pp.2885-2889
    • /
    • 2013
  • Goniothalamin is an active compound extracted from Goniothalamus griffithii, a local plant found in northern Thailand. Goniothalamin inhibits cancer cell growth but is also toxic to normal cells. The aims of this study were to identify the cytotoxic effect of goniothalamin and the mechanism of cell death in human HL-60 and U937 cells. Cytotoxicity was determined by MTT assay and cell cycle profiles were demonstrated by staining with propidium iodide (PI) and flow cytometry. Apoptosis was confirmed by staining with annexin V-FITC/propidium iodide (PI) and flow cytometry. Reduction of mitochondrial transmembrane potential was determined by staining with dihexyloxacarbocyanine iodide and flow cytometry and expression of Smac, caspase-8 and -9 was demonstrated by Western blotting. Goniothalamin inhibited growth of HL-60 and U937 cell lines. An increase of SubG1 phase was found in their cell cycle profiles, indicating apoptosis as the mode of cell death. Apoptosis was confirmed by the flip-flop of phosphatidylserine using annexin V-FITC/PI assay in HL60 and U937 cells in a dose response manner. Furthermore, reduction of mitochondrial transmembrane potential was found in both cell types while expression of caspase-8, -9 and Smac/Diablo was increased in HL-60 cells. Taken together, our results indicate that goniothalamin-treated human leukemic cells undergo apoptosis via intrinsic and extrinsic pathways.

유세포 분석기를 이용한 galectin-3에 의해 유도된 흉선세포의 apoptosis 분석 (Flow cytometric analysis of apoptosis in mouse thymocytes by galectin-3)

  • 김태중;우희종
    • 대한수의학회지
    • /
    • 제39권6호
    • /
    • pp.1112-1118
    • /
    • 1999
  • Galectin-3 plays an important role in cell development, differentiation and cancer metastasis, including cell-cell/extracellular matrix (ECM) interactions and is supposed to have an effect of apoptosis on T-cells in thymic clonal selection. In this study, to know the effect of galectin-3 on thymocyte development, we used recombinant human galectin-3 (rHgal-3) from Escherichia coli, JM105, which was inserted with human gal-3 gene-transformed plasmid vector (prGal-3) to express human galectin-3. Expressed rHgal-3 was confirmed by western blot using the culture supernant of hybridoma (M3/38) producing monoclonal antibody to human galectin-3. Sepharose gel affinity chromatography was used to purify the expressed rHgal-3. Thymocytes and hepatocytes from 6-week-old male BALB/c mice were incubated with rHgal-3 and showed marked increase of apoptotic population on analysis using flow cytometry with 7-AAD in a dosedependent manner. However, rHgal-3 failed to induce apoptosis on hepatocytes. Interestingly, this apoptotic effect was not inhibited by lactose, a specific lectin domain inhibitor. From these results, we concluded that extrinsic -3 induces apoptosis on mouse thymocytes, and galectin-3 may have an apoptotic effect on T-cells in thymic clonal selection.

  • PDF

Inhibitory Effect of Snake Venom Toxin on Colorectal Cancer HCT116 Cells Growth through Induction of Intrinsic or Extrinsic Apoptosis

  • Kim, Kyung Tae;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • 제30권1호
    • /
    • pp.43-55
    • /
    • 2013
  • I investigated whether snake venom toxin(SVT) from Vipera lebetina turanica enhances the apoptosis ability of tumor necrosis factor(TNF)-related apoptosis-inducing ligand(TRAIL) in cancer cells. TRAIL inhibited HCT116 cell growth in a dose-dependent manner. Consistent with cell growth inhibition, the expression of TRAIL receptors; DR4 and DR5 was significantly increased as well as apoptosis related proteins such as cleaved caspase-3, 8, 9 and Bax. However, the expression of survival proteins(eg, cFLIP, survivin, XIAP and Bcl2) was suppressed by the combination treatment of SVT and TRAIL. Pretreatment with the reactive oxygen species(ROS) scavenger N-acetylcysteine reduced the SVT and TRAIL-induced upregulation of DR4 and DR5 expression and expression of the apoptosis related protein such as caspase-3 and-9 as well as cell growth inhibitory effects. The collective results suggest that SVT facilitates TRAIL-induced apoptosis in human colorectal cancer HCT116 cells through up-regulation of the TRAIL receptors; DR4 and DR5 via ROS pathway signals.

Bee Venom Enhanced Cytotoxic Effect of Natural Killer Cells on Human Lung Cancer Through Inducing Extrinsic Apoptosis

  • Kim, Jung Hyun;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • 제31권1호
    • /
    • pp.111-119
    • /
    • 2014
  • Objectives : I investigated whether Bee Venom can synergistically strengthen the cytotoxic effects of NK-92 cells, enhancing the inhibition of the growth of Lung Cancer Cells including A549 and NCI-H460 through induction of death receptor dependent extrinsic apoptosis and NO generation in the Nitro-oxide pathway. Methods : Bee Venom inhibited cell proliferation of A549 or NCI-H460 Human Lung Cancer Cells as well as NK-92 Cells. Moreover, when they were co-punctured with NK cells and concomitantly treated by 3 ${\mu}g/ml$ of Bee Venom, more influence was exerted on inhibition of proliferation of A549 or NCI-H460 Human Lung Cancer Cells than BV or NK cell co-culture alone. Results : The expression of Fas, TNFR2, DR3, DR6 in A549 Lung Cancer Cells was significantly increased by co-culture of NK-92 cells and treatment of 3 ${\mu}g/ml$ of Bee Venom, compared to co-culture of NK-92 cells alone, whereas the expression of Fas, TNFR2, DR6 in NCI-H460 Lung Cancer Cells was significantly increased by co-culture of NK-92 cells, representing no synergistic effects in the co-culture of NK-92 cell and concomitant treatment of 3 ${\mu}g/ml$ of Bee Venom. Coincidently, caspase-8, a expression of pro-apoptotic proteins in the extrinsic apoptosis pathway demonstrated same results as the above. Meanwhile, In NO generation, there is little change of NO generation in co-culture of NK-92 cells with A549 cells as well as the co-culture of NK-92 cell with them and concomitant treatment of 3 ${\mu}g/ml$ of Bee Venom, whereas increase of NO generation was shown in co-culture of NK-92 cells with NCI-H460 cells as well as the co-culture of NK-92 cell with them and concomitant treatment of 3 ${\mu}g/ml$ of Bee Venom, although synergistic effects by Bee Venom was not found. Conclusions : These present data provide that Bee Venom could be useful candidate compounds to enhance lung cancer growth inhibiting ability of NK-92 cells through DR expression and the related apoptosis.