• Title/Summary/Keyword: extremely halophilic archaea

Search Result 3, Processing Time 0.02 seconds

Diversity of Halophilic Archaea From Six Hypersaline Environments in Turkey

  • Ozcan, Birgul;Ozcengiz, Gulay;Coleri, Arzu;Cokmus, Cumhur
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.985-992
    • /
    • 2007
  • The diversity of archaeal strains from six hypersaline environments in Turkey was analyzed by comparing their phenotypic characteristics and 16S rDNA sequences. Thirty-three isolates were characterized in terms of their phenotypic properties including morphological and biochemical characteristics, susceptibility to different antibiotics, and total lipid and plasmid contents, and finally compared by 16S rDNA gene sequences. The results showed that all isolates belong to the family Halobacteriaceae. Phylogenetic analyses using approximately 1,388 bp comparisions of 16S rDNA sequences demonstrated that all isolates clustered closely to species belonging to 9 genera, namely Halorubrum (8 isolates), Natrinema (5 isolates), Haloarcula (4 isolates), Natronococcus (4 isolates), Natrialba (4 isolates), Haloferax (3 isolates), Haloterrigena (3 isolates), Halalkalicoccus (1 isolate), and Halomicrobium (1 isolate). The results revealed a high diversity among the isolated halophilic strains and indicated that some of these strains constitute new taxa of extremely halophilic archaea.

Phylogenetic diversity of bacterial communities in a gray solar saltern and isolation of extremely halophilic bacteria using culturomics (토판염전 결정지 내 세균군집의 계통학적 다양성 및 Culturomics법을 이용한 고도 호염균의 분리)

  • Cho, Geon-Yeong;Han, Song-Ih;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.53 no.1
    • /
    • pp.29-38
    • /
    • 2017
  • In this study, we investigated the phylogenetic diversity of the bacterial community and isolation of extremely halophilic bacteria using culturomics in a gray solar saltern. The number of bacterial living cells, enumerated in a gray solar saltern by direct fluorescence microscopy was three to four orders of magnitude greater than those enumerated by plate counts, suggesting the distribution of 'viable but non-culturable bacteria'. The biodiversity of bacterial communities in a gray solar saltern was investigated by pyrosequencing, 1,778 OTUs of bacteria were comprised of 18 phyla 46 classes 85 orders 140 families 243 genera with 6.16 diversity index. Archaea communities were composed of 3 phyla 6 classes 7 orders 7 families 38 genera with 4.95 diversity index from 643 OTUs. Totally 137 isolates were isolated by 59 different cultural methods based on culturomics considering culture media and conditions suitable for the growth of extremely halophilic bacteria. Phylogenetic analyses of extremely halophilic isolates based on 16S rRNA gene sequences, extremely halophilic isolates were composed of 4 phyla and 11 genera. Haloterrigena and Haloferax can be successfully isolated from culturomics. These culturomics were effective methods for collection of diversity of extremely halophilic bacteria.

Genomic Analysis of the Extremely Halophilic Archaeon Halobacterium noricense CBA1132 Isolated from Solar Salt That Is an Essential Material for Fermented Foods

  • Lim, Seul Ki;Kim, Joon Yong;Song, Hye Seon;Kwon, Min-Sung;Lee, Jieun;Oh, Young Jun;Nam, Young-Do;Seo, Myung-Ji;Lee, Dong-Gi;Choi, Jong-Soon;Yoon, Changmann;Sohn, Eunju;Rahman, MD. Arif-Ur;Roh, Seong Woon;Choi, Hak-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1375-1382
    • /
    • 2016
  • The extremely halophilic archaeon Halobacterium noricense is a member of the genus Halobacterium. Strain CBA1132 (= KCCM 43183, JCM 31150) was isolated from solar salt. The genome of strain CBA1132 assembled with 4 contigs, including three rRNA genes, 44 tRNA genes, and 3,208 open reading frames. Strain CBA1132 had nine putative CRISPRs and the genome contained genes encoding metal resistance determinants: copper-translocating P-type ATPase (CtpA), arsenical pump-driving ATPase (ArsA), arsenate reductase (ArsC), and arsenical resistance operon repressor (ArsR). Strain CBA1132 was related to Halobacterium noricense, with 99.2% 16S rRNA gene sequence similarity. Based on the comparative genomic analysis, strain CBA1132 has distinctly evolved; moreover, essential genes related to nitrogen metabolism were only detected in the genome of strain CBA1132 among the reported genomes in the genus Halobacterium. This genome sequence of Halobacterium noricense CBA1132 may be of use in future molecular biological studies.