• 제목/요약/키워드: extremely brittle

검색결과 28건 처리시간 0.02초

얼음의 재료 모델 적용 타당성 연구 (Comparative Study on Material Constitutive Models of Ice)

  • 정준모;남지명;김경수
    • 대한조선학회논문집
    • /
    • 제48권1호
    • /
    • pp.42-48
    • /
    • 2011
  • To define ice as a solid material, mathematical and physical characteristics and their application examples are investigated for several materials' yield functions which include isotropic elastic, isotropic elastic-plastic, classical Drucker-Prager, Drucker-Prager Cap, Heinonen's elliptic, Derradji-Aouat's elliptic, and crushable foam models. Taking into account brittle failure mode of ice subject to high loading rate or extremely low temperature, isotropic elastic model can be better practicable than isotropic elastic-plastic model. If a failure criterion can be properly determined, the elastic model will provide relatively practicable impact force history from ice-hull interactions. On the other hand, it is thought that the soil models can better predict the ice spalling mechanism, since they contain both terms of shear stress-induced and hydrostatic stress-induced failures in the yield function.

Component deformation-based seismic design method for RC structure and engineering application

  • Han, Xiaolei;Huang, Difang;Ji, Jing;Lin, Jinyue
    • Earthquakes and Structures
    • /
    • 제16권5호
    • /
    • pp.575-588
    • /
    • 2019
  • Seismic design method based on bearing capacity has been widely adopted in building codes around the world, however, damage and collapse state of structure under strong earthquake can not be reflected accurately. This paper aims to present a deformation-based seismic design method based on the research of RC component deformation index limit, which combines with the feature of Chinese building codes. In the proposed method, building performance is divided into five levels and components are classified into three types according to their importance. Five specific design approaches, namely, "Elastic Design", "Unyielding Design", "Limit Design", "Minimum Section Design" and "Deformation Assessment", are defined and used in different scenarios to prove whether the seismic performance objectives are attained. For the components which exhibit ductile failure, deformation of components under strong earthquake are obtained quantitatively in order to identify the damage state of the components. For the components which present brittle shear failure, their performance is guaranteed by bearing capacity. As a case study, seismic design of an extremely irregular twin-tower high rise building was carried out according to the proposed method. The results evidenced that the damage and anti-collapse ability of structure were estimated and controlled by both deformation and bearing capacity.

석영 유리의 파괴 거동에 관한 연구(II) (A Study on the Fracture Behavior of Quartz Glass(II))

  • 최성대;정선환;권현규;정영관;홍영배
    • 한국산업융합학회 논문집
    • /
    • 제10권4호
    • /
    • pp.213-219
    • /
    • 2007
  • Glass-to-metal contact should be prevented in the design of any structural glass component. Because glass is extremely brittle and will fracture readily if even a small point load is applied. If the assembly includes a glass component supported by metallic structure, designers should provide a pliable interface of some kind between the two parts. But there happens high demand of glass-to metal contact in semiconductor industries due to adoption of dry cleaning process as one of the good solution to reduce running cost - carry out equipments cleaning with high corrosive and etching gas such as CF4 with keeping process temperature as the same as high service temperature. Therefore the quartz glass have to be received compression by direct contact with metal as the form of weight itself and vacuum pressure and fatigue by vibrations caused by process during the process. In this paper investigation will be carried out on fracture behavior of quartz glass contacted with metal directly under local load and fatigue given by process vibration with apparatus which can give $lox{\backslash}cal$ load and vibration through PZT ceramics to give guideline to prevent unintended fracture of quartz glass.

  • PDF

회주철의 마찰용접 특성에 관한 연구 - 입열량 이론식을 중심으로 - (Friction Weldability of Grey Cast Iron - by the Concept of Friction Weld Heat Input Parameter -)

  • 정호신;방국수
    • Journal of Welding and Joining
    • /
    • 제32권3호
    • /
    • pp.95-101
    • /
    • 2014
  • Joining of grey cast iron by fusion welding has much difficulties for its extremely low ductility and low toughness because of the flake form of the graphite. And the brittle microstructure, i.e. ledeburite may be formed during fusion welding by its rapid cooling rates. By these kinds of welding problem, preheat and post heat treatment temperature must be increased to avoid weld crack or welding problems. In order to avoid these fusion welding problem, friction welding of cast iron was carried out for improving joint soundness, establishing friction welding variables. There is no factor for evaluating friction weldability in continuous drive type friction welding. In this point of view, this study proposed the parameters for calculating friction weld heat input. The results obtained are as follows ; 1. There was a close relationship between tensile strength and flash appearance of friction welded joint. 2. Tensile strength was decreased and flash was severely oxidized as increasing frictional heating time. 3. As increased forging pressure $P_2$, flash had a large crack and tensile strength was decreased. 4. As powdered graphite by rotational frictional force induced flat surface and hindered plastic flow of metal, tensile strength of welded joint was decreased. 5. Heat input for continuous drive type friction welding could be calculated by the factors of $P_1$, $P_2$ and upset distance(${\delta}$).

Material Properties and Compressibility Using Heckel and Kawakita Equation with Commonly Used Pharmaceutical Excipients

  • Choi, Du-Hyung;Kim, Nam-Ah;Chu, Kyung-Rok;Jung, Youn-Jung;Yoon, Jeong-Hyun;Jeong, Seong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권4호
    • /
    • pp.237-244
    • /
    • 2010
  • This study investigated basic material properties and compressibility of commonly used pharmaceutical excipients. Five classes of excipients are selected including starch, lactose, calcium phosphate, microcrystalline cellulose (MCC), and povidone. The compressibility was evaluated using compression parameters derived from Heckel and Kawakita equation. The Heckel plot for lactose and dicalcium phosphate showed almost linear relationship. However, for MCC and povidone, curves in the initial phase of compression were observed followed by linear regions. The initial curve was considered as particle rearrangement and fragmentation and then plastic deformation at the later stages of the compression cycle. The Kawakita equation showed MCC exhibited higher compressibility, followed by povidone, lactose, and calcium phosphate. MCC undergoes significant plastic deformation during compression bringing an extremely large surface area into close contact and facilitating hydrogen bond formation between the plastically deformed, adjacent cellulose particles. Lactose compacts are consolidated by both plastic deformation and fragmentation, but to a larger extent by fragmentation. Calcium phosphate has poor binding properties because of its brittle nature. When formulating tablets, selection of suitable pharmaceutical excipients is very important and they need to have good compression properties with decent powder flowability. Material properties tested in this study might give a good guide how to select excipients for tablet formulations and help the formulation scientists design the optimum ones.

보일러 管材料의 크리프破斷特性에 미치는 고온부식의 影響 (The Effects of Hot Corrosion on the Creep Rupture Properties of Boiler Tube Material)

  • 오세욱;박인석;강상훈
    • 대한기계학회논문집
    • /
    • 제13권2호
    • /
    • pp.236-242
    • /
    • 1989
  • 본 연구에서는 주로 보일러의 과열기 및 재열기등의 관재료로 널리 사용되고 있는 304 스테인레스강에 대하여 실제 고온부식현상을 재현한 부식환경하인 630.deg. C, 690.deg. C 및 750.deg. C 3가지 온도범위에서 크리프시험을 실시하고 고온부식이 크리프파단 특성에 미치는 영향을 부식조건이 없는 고온대기중의 실험결과와 비교 검토하였다.

고강도 철근콘크리트 띠철근 기둥의 구속효과 (Confinement Effects of High Strength Reinforced Concrete Tied Columns)

  • 신성우;한범석
    • 콘크리트학회논문집
    • /
    • 제14권4호
    • /
    • pp.578-588
    • /
    • 2002
  • 철근콘크리트 구조물은 일반적으로 지진에 연성적으로 거동하도록 설계되며, 이러한 연성적인 거동을 위하여 구조부재는 주의 깊게 상세 설계되어진다. 모멘트 연성골조 구조물의 경우 기둥의 소성힌지 구역에서 횡보강근의 상세는 중요한 고려사항이다. 수 년 동안 강도와 연성을 항상시키기 위한 횡보강근의 상세에 대한 인구가 많은 연구자들에 의해 진행되어 왔고, 그 결과 횡보강근에 의한 코아 콘크리트의 적절한 구속과 주근의 횡방향 지지는 기둥의 연성을 가장 효과적으로 증진시키는 것으로 증명되었다. 횡보강근에 의해 구속된 콘크리트의 강도와 연성증진을 고려한 응력-변형률 특성에 대한 연구는 지난 30년 동안 급속하게 이루어졌다. 그러나 현재까지도 구속된 고강도 콘크리트의 특성을 정확하게 예측할 수 있는 모델은 거의 없으며, 이에 대한 자료도 부족한 것으로 보고되고 있다. 따라서 본 연구에서는 콘크리트 강도, 횡보강근의 체적비, 횡보강근의 배근형태 및 간격, 주근의 배열을 주요변수로 하여 고 강도 콘크리트를 사용한 Large-Scale의 기둥을 대상으로 구조실험을 수행하였다. 연구결과 기존 모델의 일부는 최대 응력을 과대평가, 최대 응력에서의 변형률을 과소평가하는 것으로 나타났으며, 대부분의 모델이 응력-변형률 곡선의 하강부분을 합리적으로 예측하지 못하는 것으로 나타났다. 따라서 구속된 고 강도 콘크리트의 거동을 정확히 예측하여 설계에 반영될 수 있는 합리적이면서 실용적인 모델의 개발이 요구된다 하겠다.

Research of Diffusion Bonding of Tungsten/Copper and Their Properties under High Heat Flux

  • Li, Jun;Yang, Jianfeng
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.14-14
    • /
    • 2011
  • W (tungsten)-alloys will be the most promising plasma facing armor materials in highly loaded plasma interactive components of the next step fusion reactors due to its high melting point, high sputtering resistance and low deuterium/tritium retention. The bonding technology of tungsten to Cu alloy was one of the key issues. In this paper, W/CuCrZr diffusion bonding has been performed successfully by inserting pure metal interlay. The joint microstructure, interfacial elements migration and phase composition were analyzed by SEM, EDS, XRD, and the joint shear strength and micro-hardness were investigated. The mock-ups were fabricated successfully with diffusion bonding and the cladding technology respectively, and the high heat flux test and thermal fatigue test were carried out under actively cooling condition. When Ni foil was used for the bonding of tungsten to CuCrZr, two reaction layers, Ni4W and Ni(W) layer, appeared between the tungsten and Ni interlayer with the optimized condition. Even though Ni4W is hard and brittle, and the strength of the joint was oppositely increased (217 MPa) due primarily to extremely small thicknesses (2~3 ${\mu}m$). When Ti foil was selected as the interlayer, the Ti foil diffused quickly with Cu and was transformed into liquid phase at $1,000^{\circ}C$. Almost all of the liquid was extruded out of the interface zone under bonding pressure, and an extremely thin residual layer (1~2 ${\mu}m$) of the liquid phase was retained between the tungsten and CuCrZr, which shear strength exceeded 160 MPa. When Ni/Ti/Ni multiple interlayers were used for bonding of tungsten to CuCrZr, a large number of intermetallic compound ($Ni_4W/NiTi_2/NiTi/Ni_3T$) were formed for the interdiffusion among W, Ni and Ti. Therefore, the shear strength of the joint was low and just about 85 MPa. The residual stresses in the clad samples with flat, arc, rectangle and trapezoid interface were estimated by Finite Element Analysis. The simulation results show that the flat clad sample was subjected maximum residual stress at the edge of the interface, which could be cracked at the edge and propagated along the interface. As for the rectangle and trapezoid interface, the residual stresses of the interface were lower than that of the flat interface, and the interface of the arc clad sample have lowest residual stress and all of the residual stress with arc interface were divided into different grooved zones, so the probabilities of cracking and propagation were lower than other interfaces. The residual stresses of the mock-ups under high heat flux of 10 $MW/m^2$ were estimated by Finite Element Analysis. The tungsten of the flat interfaces was subjected to tensile stresses (positive $S_x$), and the CuCrZr was subjected to compressive stresses (negative $S_x$). If the interface have a little microcrack, the tungsten of joint was more liable to propagate than the CuCrZr due to the brittle of the tungsten. However, when the flat interface was substituted by arc interfaces, the periodical residual stresses in the joining region were either released or formed a stress field prohibiting the growth or nucleation of the interfacial cracks. Thermal fatigue tests were performed on the mock-ups of flat and arc interface under the heat flux of 10 $MW/m^2$ with the cooling water velocity of 10 m/s. After thermal cycle experiments, a large number of microcracks appeared at the tungsten substrate due to large radial tensile stress on the flat mock-up. The defects would largely affect the heat transfer capability and the structure reliability of the mock-up. As for the arc mock-up, even though some microcracks were found at the interface of the regions, all microcracks with arc interface were divided into different arc-grooved zones, so the propagation of microcracks is difficult.

  • PDF