• Title/Summary/Keyword: extreme materials

Search Result 358, Processing Time 0.021 seconds

Development of Test Facility for Micro Gas Turbine (마이크로 가스터빈 시험 장치 개발)

  • Lim, Hyung-Soo;Choi, Bum-Seog;Park, Moo-Ryong;Hwang, Soon-Chan;Park, Jun-Young;Seo, Jeongmin;Bang, Je-Sung;Lim, Young-Chul;Oh, In-Kyun;Kim, Byung Ok;Cho, Ju Hyeong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.5
    • /
    • pp.42-48
    • /
    • 2015
  • To improve the core technology of the micro gas turbine, the performance test facility was developed. This paper is focusing on the explanation of the characteristics of micro gas turbine and its assist devices. Major part of micro gas turbine were radial type of compressor, annular type of combustor, radial type of turbine, thrust foil bearing, radial foil bearing and generator. The assist devices were consist of exhaust duct, inverter, data acquisition system, load bank and test cell. Before building up the test facility, the component test was previously conducted to confirm the component performance. After the test facility was prepared, the motoring test was conducted to investigate the rotor dynamic characteristics of the micro gas turbine. Also, the part load performance test was performed. With a developed micro gas turbine test facility, the improved core technology about the micro gas turbine can be suggested to the related industries.

Force Control of 6-DOF Pneumatic Joystick

  • Tanaka, Yoshito;Hitaka, Yasunobu;Yun, So-Nam;Kim, Ji-U;Jeong, Eun-A;Park, Jung-Ho;Ham, Young-Bog
    • Journal of Power System Engineering
    • /
    • v.19 no.1
    • /
    • pp.31-37
    • /
    • 2015
  • In this paper, it is presented the development of a new type force feedback system. It is based on a 6-DOF Stewart parallel mechanism which has six pneumatic actuated cylinders. The thrust force of each cylinder is controlled by PWM control for the solenoid valve and it is actualized by PIC controller. When the pneumatic actuator is controlled, it must be considered the influence on the compressibility of air. For this problem, we guarantee the control characteristics by the effect of the accumulator. It is confirmed that the thrust force of the cylinder can be applied to the pneumatic parallel mechanism, and is presented the experimental result of force control for vertical direction.

Dynamic Force Analysis of the 6-DOF Parallel Manipulator

  • Tanaka, Yoshito;Yun, So-Nam;Hitaka, Yasunobu;Wakiyama, Masahiro;Jeong, Eun-A;Kim, Ji-U;Park, Jung-Ho;Ham, Young-Bog
    • Journal of Power System Engineering
    • /
    • v.19 no.6
    • /
    • pp.5-11
    • /
    • 2015
  • The 6DOF (degrees of freedom) Parallel Manipulators have some advantages that are high power, high rigidity, high precision for positioning and compact mechanism compared with conventional serial link manipulators. For these Parallel Manipulators, it can be expected to work in the new fields such that the medical operation, high-precision processing technology and so on. For this expectation, it is necessary to control the action reaction pair of forces which act between the Parallel Manipulator and the operated object. In this paper, we analyze the dynamics of the 6DOF Parallel Manipulator and present numerical simulation results.

Experimental Study on the Thermal Performance of a Printed Circuit Heat Exchanger in a Cryogenic Environment (극저온 환경의 인쇄기판형 열교환기 열적성능에 대한 실험적 연구)

  • Kim, Dong Ho;Na, Sang Jun;Kim, Young;Choi, Jun Seok;Yoon, Seok Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.426-431
    • /
    • 2015
  • The advantages of a printed circuit heat exchanger (PCHE) are the compactness and efficiency derived from its heat-transfer characteristics; furthermore, a PCHE for which a diffusion bonding method was used during production can be applied to extreme environments such as a cryogenic condition. In this study, a micro-channel PCHE fabricated by diffusion bonding was investigated in a cryogenic environment regarding its thermal performance and the pressure drop. The test rig consists of an LN2 storage tank, vaporizers, heaters, and a cold box, whereby the vaporized cryogenic nitrogen flows in hot and cold streams. The overall heat-transfer coefficients were evaluated and compared with traditional correlations. Lastly, we suggested the modified heat-transfer correlations for a PCHE in a cryogenic condition.

200kW Turbine Development for Organic Rankine Cycle System (200kW급 ORC용 터빈 개발)

  • Lim, Hyung-Soo;Choi, Bum-Seog;Park, Moo-Ryong;Park, Jun-Young;Yoo, Il-Su;Seo, Jeong-Min;Hwang, Soon-Chan;Yoon, Eui-Soo;Han, Sang-Jo
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.107-113
    • /
    • 2013
  • This paper presents the process of turbine development for Organic Rankine Cycle(ORC) system. Development of turbine for ORC system is hot issue in the electric generation market due to the characteristic of organic refrigerant which the evaporate temperature is lower than general refrigerant. Recently, the industry have an interest about ORC turbine development in Korea, and they presented numerous research results. In developing the turbine, several processes can be considered. However, there was few document about ORC turbine development because of the trade secret. This paper can be used as a reference in developing ORC turbine.

Basic Design of 36 MTD Class Natural Gas BOG Re-Liquefaction System (36 MTD급 천연가스 BOG 재액화 플랜트 기본설계)

  • Ko, Junseok;Park, Seong-Je;Kim, Ki-Duck;Hong, Yong-Ju;Koh, Deuk-Yong;Kim, Hyobong;Yeom, Hankil
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.99-105
    • /
    • 2013
  • In this paper, we carried out the basic design of 36 MTD natural gas BOG re-liquefaction system to recover the generated natural gas during performance test of LNG pump and natural gas compressor. The re-liquefaction process of natural gas is designed to have 1500 kg/h of liquefaction rate with reverse Brayton refrigeration cycle. With the designed process, the variation of liquefaction rate is calculated for various inlet conditions of feed gas. From results, the liquefaction rate is more sensitive for inlet temperature than gas composition. The specifications of equipments such as gas blower, natural gas compressor, cryogenic heat exchanger and nitrogen compander are determined on the basis of the designed process. The requirement of power consumption and cooling water are also determined through the basic design.

A Study on the Flow Characteristics of Reed Valve with Variable Geometric Variations for Cryogenic Linear Expander (극저온 선형 팽창기용 리드밸브의 기하학적 형상변화에 따른 유동 특성 연구)

  • Jeong, Eun A;Kim, Ji U;Yeom, Han Kil;Yun, So Nam
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.48-53
    • /
    • 2015
  • This paper deals with the flow characteristics of a reed valve analyzed using computational dynamics(CFD) for optimal design. The seat sizes of the valve are modeled asØ6[mm] and Ø8[mm] to compare the flow characteristics. The inlet boundary condition is entered at 10[kPa], 15[kPa], 20[kPa], and 30[kPa] and the outlet boundary condition is set to the atmospheric pressure. The flow coefficient(C) and pressure loss coefficient(K) are calculated from the results of flow analysis. From the analysis results, it was confirmed that the flow coefficient of a reed valve having a seat size of Ø6[mm] is greater than that having a seat size of Ø8[mm], and the coefficient of pressure loss of a valve with a seat size of Ø6[mm] is lower than the Ø8[mm] size valve.

A Study on the Structural Analysis of Spiral Valve for Cryogenic Linear Expander (극저온 선형 팽창기용 나선형 밸브의 구조 해석에 관한 연구)

  • Yun, So Nam;Kim, Ji U;Yeom, Han Kil;Kim, Hyo Bong
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • In this study, a spiral valve which is used with a cryogenic linear expander and composed of plural plate coil shapes was examined. Generally, a spiral valve is well known for having excellent efficiency and low noise characteristics. In order to determine the movement characteristics and to investigate the limit of valve displacement, the stress variations according to the changes of operating pressure, displacement and workable temperature are discussed. From this examination, it is considered that the results of this study will significantly facilitate the design and development of a spiral valve for the cryogenic linear expander.

Study on the Cooling Mechanism in a Cryogenic Cooling System (극저온 냉각 챔버 내 냉각 메커니즘 연구)

  • SEONGWOO LEE;YOUNGSANG NA;YOUNGKYUN KIM;SEUNGMIN JEON;JUNHO LEE;SUNGWOONG CHOI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.146-151
    • /
    • 2024
  • The demand for research on materials with excellent cryogenic strength and ductility has been increasing, particularly for applications such as liquid hydrogen (20 K) storage tanks. To effectively utilize liquid hydrogen, a system capable of maintaining and operating at 20 K is essential. Therefore, preliminary research and verification of the cooling system are crucial. In this study, a heat transfer analysis was conducted on a cooling system to meet the cryogenic environment requirements for cryogenic hydrogen chamber, which are conducted at liquid helium temperatures (4 K). The cooling mechanism in a helium cooling system was examined using numerical analysis. The numerical cooling trends were compared with experimentally obtained cooling results. The good agreement between numerical and experimental results suggests that the numerical approach developed in this study is applicable over a wide range of cryogenic systems.

Effects of Process Temperature on the Tribological Properties of Tetrahedral Amorphous Carbon (ta-C) Coating (공정 온도에 따른 사면체 비정질 카본 (ta-C) 코팅의 트라이볼로지적 특성연구)

  • Kang, Yong-Jin;Kim, Do Hyun;Ryu, Hojun;Kim, Jongkuk;Jang, Young-Jun
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.362-368
    • /
    • 2019
  • In this study, mechanical and tribological properties were investigated by varying the process temperature (50, 100, 125 and 150℃) to reduce internal stress. The internal stress reduction by thermal dissociation ta-C coating film with increasing temperature is confirmed through the curvature radius of the ta-C coating according to the temperature of the SUS plate. As the coating temperature increased, the mechanical properties (hardness, modulus, toughness) deteriorated, which is in agreement with the Raman analysis results. As the temperature increased, the sp2 phase ratio increased owing to the dissociation of the sp3 phase. The friction and wear properties are related to the process temperature during ta-C coating. Low friction and wear properties are observed in high hardness samples manufactured at 50℃, and wear resistance properties decreased with increasing temperature. The contact area is expected to increase owing to the decrease of hardness(72 GPa to 39 GPa) and fracture toughness with increasing temperature which accelerated wear because of the debris generated. It was confirmed that at process temperature of over than 100℃, the bond structure of the carbon film changed, and the effect of excellent internal stress was reduced. However, the wear resistance simultaneously decreased owing to the reduction in fracture toughness. Therefore, in order to increase industrial utilization, optimum temperature conditions that reduce internal stress and retain mechanical properties.