• 제목/요약/키워드: extreme gradient boosting

검색결과 55건 처리시간 0.025초

Cognitive Impairment Prediction Model Using AutoML and Lifelog

  • Hyunchul Choi;Chiho Yoon;Sae Bom Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권11호
    • /
    • pp.53-63
    • /
    • 2023
  • 본 연구는 고령층의 치매 예방을 위한 선별검사 수단으로 자동화된 기계학습(AutoML)을 활용하여 인지기능 장애 예측모형을 개발하였다. 연구 데이터는 한국지능정보사회진흥원의 '치매 고위험군 웨어러블 라이프로그 데이터'를 활용하였다. 분석은 구글 코랩 환경에서 PyCaret 3.0.0이 사용하여 우수한 분류성능을 보여주는 5개의 모형을 선정하고 앙상블 학습을 진행하여 모형을 통합한 뒤, 최종 성능평가를 진행하였다. 연구결과, Voting Classifier, Gradient Boosting Classifier, Extreme Gradient Boosting, Light Gradient Boosting Machine, Extra Trees Classifier, Random Forest Classifier 모형 순으로 높은 예측성능을 보이는 것으로 나타났다. 특히 '수면 중 분당 평균 호흡수'와 '수면 중 분당 평균 심박수'가 가장 중요한 특성변수(feature)로 확인되었다. 본 연구의 결과는 고령층의 인지기능 장애를 보다 효과적으로 관리하고 예방하기 위한 수단으로 기계학습과 라이프로그의 활용 가능성에 대한 고려를 시사한다.

XGB 및 LGBM을 활용한 Ti-6Al-4V 적층재의 변형 거동 예측 (Predicting Deformation Behavior of Additively Manufactured Ti-6Al-4V Based on XGB and LGBM)

  • 천세호;유진영;김정기;오정석;남태현;이태경
    • 소성∙가공
    • /
    • 제31권4호
    • /
    • pp.173-178
    • /
    • 2022
  • The present study employed two different machine-learning approaches, the extreme gradient boosting (XGB) and light gradient boosting machine (LGBM), to predict a compressive deformation behavior of additively manufactured Ti-6Al-4V. Such approaches have rarely been verified in the field of metallurgy in contrast to artificial neural network and its variants. XGB and LGBM provided a good prediction for elongation to failure under an extrapolated condition of processing parameters. The predicting accuracy of these methods was better than that of response surface method. Furthermore, XGB and LGBM with optimum hyperparameters well predicted a deformation behavior of Ti-6Al-4V additively manufactured under the extrapolated condition. Although the predicting capability of two methods was comparable, LGBM was superior to XGB in light of six-fold higher rate of machine learning. It is also noted this work has verified the LGBM approach in solving the metallurgical problem for the first time.

A robust approach in prediction of RCFST columns using machine learning algorithm

  • Van-Thanh Pham;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • 제46권2호
    • /
    • pp.153-173
    • /
    • 2023
  • Rectangular concrete-filled steel tubular (RCFST) column, a type of concrete-filled steel tubular (CFST), is widely used in compression members of structures because of its advantages. This paper proposes a robust machine learning-based framework for predicting the ultimate compressive strength of RCFST columns under both concentric and eccentric loading. The gradient boosting neural network (GBNN), an efficient and up-to-date ML algorithm, is utilized for developing a predictive model in the proposed framework. A total of 890 experimental data of RCFST columns, which is categorized into two datasets of concentric and eccentric compression, is carefully collected to serve as training and testing purposes. The accuracy of the proposed model is demonstrated by comparing its performance with seven state-of-the-art machine learning methods including decision tree (DT), random forest (RF), support vector machines (SVM), deep learning (DL), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and categorical gradient boosting (CatBoost). Four available design codes, including the European (EC4), American concrete institute (ACI), American institute of steel construction (AISC), and Australian/New Zealand (AS/NZS) are refereed in another comparison. The results demonstrate that the proposed GBNN method is a robust and powerful approach to obtain the ultimate strength of RCFST columns.

Nanotechnology in early diagnosis of gastro intestinal cancer surgery through CNN and ANN-extreme gradient boosting

  • Y. Wenjing;T. Yuhan;Y. Zhiang;T. Shanhui;L. Shijun;M. Sharaf
    • Advances in nano research
    • /
    • 제15권5호
    • /
    • pp.451-466
    • /
    • 2023
  • Gastrointestinal cancer (GC) is a prevalent malignant tumor of the digestive system that poses a severe health risk to humans. Due to the specific organ structure of the gastrointestinal system, both endoscopic and MRI diagnoses of GIC have limited sensitivity. The primary factors influencing curative efficacy in GIC patients are drug inefficacy and high recurrence rates in surgical and pharmacological therapy. Due to its unique optical features, good biocompatibility, surface effects, and small size effects, nanotechnology is a developing and advanced area of study for the detection and treatment of cancer. Because of its deep location and complex surgery, diagnosing and treating gastrointestinal cancer is very difficult. The early diagnosis and urgent treatment of gastrointestinal illness are enabled by nanotechnology. As diagnostic and therapeutic tools, nanoparticles directly target tumor cells, allowing their detection and removal. XGBoost was used as a classification method known for achieving numerous winning solutions in data analysis competitions, to capture nonlinear relations among many input variables and outcomes using the boosting approach to machine learning. The research sample included 300 GC patients, comprising 190 males (72.2% of the sample) and 110 women (27.8%). Using convolutional neural networks (CNN) and artificial neural networks (ANN)-EXtreme Gradient Boosting (XGBoost), the patients mean± SD age was 50.42 ± 13.06. High-risk behaviors (P = 0.070), age at diagnosis (P = 0.037), distant metastasis (P = 0.004), and tumor stage (P = 0.015) were shown to have a statistically significant link with GC patient survival. AUC was 0.92, sensitivity was 81.5%, specificity was 90.5%, and accuracy was 84.7 when analyzing stomach picture.

Development and Validation of MRI-Based Radiomics Models for Diagnosing Juvenile Myoclonic Epilepsy

  • Kyung Min Kim;Heewon Hwang;Beomseok Sohn;Kisung Park;Kyunghwa Han;Sung Soo Ahn;Wonwoo Lee;Min Kyung Chu;Kyoung Heo;Seung-Koo Lee
    • Korean Journal of Radiology
    • /
    • 제23권12호
    • /
    • pp.1281-1289
    • /
    • 2022
  • Objective: Radiomic modeling using multiple regions of interest in MRI of the brain to diagnose juvenile myoclonic epilepsy (JME) has not yet been investigated. This study aimed to develop and validate radiomics prediction models to distinguish patients with JME from healthy controls (HCs), and to evaluate the feasibility of a radiomics approach using MRI for diagnosing JME. Materials and Methods: A total of 97 JME patients (25.6 ± 8.5 years; female, 45.5%) and 32 HCs (28.9 ± 11.4 years; female, 50.0%) were randomly split (7:3 ratio) into a training (n = 90) and a test set (n = 39) group. Radiomic features were extracted from 22 regions of interest in the brain using the T1-weighted MRI based on clinical evidence. Predictive models were trained using seven modeling methods, including a light gradient boosting machine, support vector classifier, random forest, logistic regression, extreme gradient boosting, gradient boosting machine, and decision tree, with radiomics features in the training set. The performance of the models was validated and compared to the test set. The model with the highest area under the receiver operating curve (AUROC) was chosen, and important features in the model were identified. Results: The seven tested radiomics models, including light gradient boosting machine, support vector classifier, random forest, logistic regression, extreme gradient boosting, gradient boosting machine, and decision tree, showed AUROC values of 0.817, 0.807, 0.783, 0.779, 0.767, 0.762, and 0.672, respectively. The light gradient boosting machine with the highest AUROC, albeit without statistically significant differences from the other models in pairwise comparisons, had accuracy, precision, recall, and F1 scores of 0.795, 0.818, 0.931, and 0.871, respectively. Radiomic features, including the putamen and ventral diencephalon, were ranked as the most important for suggesting JME. Conclusion: Radiomic models using MRI were able to differentiate JME from HCs.

익스트림 그라디언트 부스팅을 이용한 지수/주가 이동 방향 예측 (Prediction of the Movement Directions of Index and Stock Prices Using Extreme Gradient Boosting)

  • 김형도
    • 한국콘텐츠학회논문지
    • /
    • 제18권9호
    • /
    • pp.623-632
    • /
    • 2018
  • 주가 이동 방향의 정확한 예측이 주식 매매에 관한 전략적 의사결정에 중요한 역할을 할 수 있기 때문에 투자자와 연구자 모두의 관심이 높다. 주가 이동 방향에 관한 기존 연구들을 종합해보면, 주식 시장에 따라서 그리고 예측 기간에 따라서 다양한 변수가 고려되고 있음을 알 수 있다. 이 연구에서는 한국 주식 시장을 대표하는 지수와 주식들을 대상으로 이동 방향 예측 기간에 따라서 어떤 데이터마이닝 기법의 성능이 우수한 것인지를 분석하고자 하였다. 특히, 최근 공개경쟁에서 활발히 사용되며 그 우수성이 입증되고 있는 익스트림 그라디언트 부스팅 기법을 주가 이동 방향 예측 문제에 적용하고자 하였으며, SVM, 랜덤 포리스트, 인공 신경망과 같이 기존 연구에서 우수한 것으로 보고된 데이터마이닝 기법들과 비교하여 분석하였다. 12년간 데이터를 사용하여 1일 후에서 5일 후까지의 이동 방향을 예측하는 실험을 통해서, 예측 기간과 종목에 따라서 선택된 변수들에 차이가 있으며, 1-4일 후 예측에서는 익스트림 그라디언트 부스팅이 다른 기법들과 부분적으로 동등함을 가지면서도 가장 우수함을 확인하였다.

기계학습을 이용한 염화물 확산계수 예측모델 개발 (Development of Prediction Model of Chloride Diffusion Coefficient using Machine Learning)

  • 김현수
    • 한국공간구조학회논문집
    • /
    • 제23권3호
    • /
    • pp.87-94
    • /
    • 2023
  • Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure's safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.

Mean fragmentation size prediction in an open-pit mine using machine learning techniques and the Kuz-Ram model

  • Seung-Joong Lee;Sung-Oong Choi
    • Geomechanics and Engineering
    • /
    • 제34권5호
    • /
    • pp.547-559
    • /
    • 2023
  • We evaluated the applicability of machine learning techniques and the Kuz-Ram model for predicting the mean fragmentation size in open-pit mines. The characteristics of the in-situ rock considered here were uniaxial compressive strength, tensile strength, rock factor, and mean in-situ block size. Seventy field datasets that included these characteristics were collected to predict the mean fragmentation size. Deep neural network, support vector machine, and extreme gradient boosting (XGBoost) models were trained using the data. The performance was evaluated using the root mean squared error (RMSE) and the coefficient of determination (r2). The XGBoost model had the smallest RMSE and the highest r2 value compared with the other models. Additionally, when analyzing the error rate between the measured and predicted values, XGBoost had the lowest error rate. When the Kuz-Ram model was applied, low accuracy was observed owing to the differences in the characteristics of data used for model development. Consequently, the proposed XGBoost model predicted the mean fragmentation size more accurately than other models. If its performance is improved by securing sufficient data in the future, it will be useful for improving the blasting efficiency at the target site.

콘크리트 탄산화 및 열효과에 의한 경년열화 예측을 위한 기계학습 모델의 정확성 검토 (Accuracy Evaluation of Machine Learning Model for Concrete Aging Prediction due to Thermal Effect and Carbonation)

  • 김현수
    • 한국공간구조학회논문집
    • /
    • 제23권4호
    • /
    • pp.81-88
    • /
    • 2023
  • Numerous factors contribute to the deterioration of reinforced concrete structures. Elevated temperatures significantly alter the composition of the concrete ingredients, consequently diminishing the concrete's strength properties. With the escalation of global CO2 levels, the carbonation of concrete structures has emerged as a critical challenge, substantially affecting concrete durability research. Assessing and predicting concrete degradation due to thermal effects and carbonation are crucial yet intricate tasks. To address this, multiple prediction models for concrete carbonation and compressive strength under thermal impact have been developed. This study employs seven machine learning algorithms-specifically, multiple linear regression, decision trees, random forest, support vector machines, k-nearest neighbors, artificial neural networks, and extreme gradient boosting algorithms-to formulate predictive models for concrete carbonation and thermal impact. Two distinct datasets, derived from reported experimental studies, were utilized for training these predictive models. Performance evaluation relied on metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analytical outcomes demonstrate that neural networks and extreme gradient boosting algorithms outshine the remaining five machine learning approaches, showcasing outstanding predictive performance for concrete carbonation and thermal effect modeling.

지진으로 인한 건물 손상 예측 모델의 효율성 분석 (Evaluating the Efficiency of Models for Predicting Seismic Building Damage)

  • 채송화;임유진
    • 정보처리학회 논문지
    • /
    • 제13권5호
    • /
    • pp.217-220
    • /
    • 2024
  • 지진 발생은 정확히 예측하기 어렵고, 이러한 무작위성을 갖는 사건에 대비하여 모든 건물에 내진 설계를 도입하는 것은 현실적으로 어려운 과제이다. 건물의 특징 분석을 통한 건물 손상 예측을 기반으로 건물의 취약점을 보완한다면, 내진 설계를 도입하지 않은 건물에서도 피해를 최소화할 수 있으므로 건물 손상 예측 모델의 효율성을 분석하는 연구가 필요하다. 본 논문에서는 2015년 네팔 대지진으로 인해 손상된 건물 데이터를 활용하여 Random Forest, Extreme Gradient Boosting, LightGBM, CatBoost 기계학습 분류 알고리즘을 사용하여 지진 피해 예측 모델의 정확도를 비교하였다.