• Title/Summary/Keyword: extraction with solvent

Search Result 1,174, Processing Time 0.029 seconds

Comparison of Static and Dynamic Solvent Extraction of Polychlorinated Dibenzofurans from Fly Ash

  • Yang, Jeong Soo;Jeong, Jang Hwan;Yu, Euy Kyung
    • Analytical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.295-301
    • /
    • 2004
  • In this study, static and dynamic solvent extractions are compared for more efficient extraction of polychlorinated dibenzofurans (PCDFs) from fly ash. Static solvent extraction rather than dynamic extraction showed a higher recovery of PCDFs, which was adsorbed strongly with fly ash. The effects of parameters, such as temperature, toluene-isopropyl alcohol mixture, static and dynamic time flow rate, and solvent volume on the extraction were investigated and the variations in average recoveries of PCDFs were explained. In both extractions, temperature was an effective parameter because the higher temperature gave the higher recoveries. In dynamic solvent extraction, dynamic time was more effective than flow rate and solvent volume for the extraction of PCDFs from fly ash. Multi-layer column chromatography on neutral and acidic silica gel with n-hexane was used for cleaning up the extracts. The quantification of the PCDFs extracted was performed using HPLC-UV.

Extraction of Oil from Chlorella vulgaris Using Supercritical Carbon Dioxide and Organic Solvent (초임계 이산화탄소와 유기용매를 이용한 Chlorella vulgaris 오일의 추출)

  • Ryu, Jong-Hoon;Park, Mi-Ran;Lim, Giobin
    • KSBB Journal
    • /
    • v.29 no.2
    • /
    • pp.98-105
    • /
    • 2014
  • Three different types of extraction processes, which used supercritical carbon dioxide ($SCCO_2$) and organic solvent, were attempted to improve the extraction yield of oil from Chlorella vulgaris: cosolvent-modified $SCCO_2$ extraction, $SCCO_2$ extraction with ultrasonic sample treatment in organic solvent, and static extraction with organic solvent followed by dynamic $SCCO_2$ extraction. Among these, the last $SCCO_2$ extraction process was found to be most effective in the extraction of oil. Compared with pure $SCCO_2$ extraction, the extraction yield of oil was observed to increase about 7 times.

Extraction Method of Antioxidants in Soybean Oil (Sweep Co-Distillation 법에 의한 산화방지제의 추출법)

  • 황혜정
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.4
    • /
    • pp.358-363
    • /
    • 1999
  • This study was conducted to evaluate the extraction methods for the determination of antioxidants in soybean oil. Recovery rates of various antioxidants in soybean oil showed similar rates as 80.4~102.1% by solvent/solvent extraction method and 89.9~106.4% by sweep co-distillation method except 46.6~61.2% of PG at corresponding spiked concentractions. The maximun recovery rates of antioxidnts were obtained when extraction time and extraction temperature used in UNITREX were 20min and 21$0^{\circ}C$ respectively. In the recovery rates with the activation of florisil when 2% ofwater was added to florisil the highest recovery rates for TBHQ, BHA, BHT were obtained by sweep co-distillation met-hod. Therefore sweep co-distillation method showed less solvent simple operation and high recovery rate compared with solvent/solvent extraction method.

  • PDF

Analytical Method for Dioxin and Organo-Chlorinated Compounds: (Ⅱ) Comparison and Extraction Methods of Dioxins from XAD-2 Adsorbent

  • 양정수;이성광;박영훈;이대운
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.689-695
    • /
    • 1999
  • Supercritical fluid extraction (SFE), ultrasonic extraction (USE), and accelerated solvent extraction (ASE) were compared with the well known Soxhlet extraction for the extraction of polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins(PCDDs) from the XAD-2 resin which was used to adsorb PCDDs in the atmosphere. XAD-2 resin spiked with five PCDDs was chosen as a sample. The optimum conditions for the extraction of PCDDs by SFE were turned out to be the use of CO2 modified with 10% toluene at 100 ℃ and 350 atm, with 5 min static extraction followed by 20 min dynamic extraction. SFE gave a good extraction rate with good reproducibility for PCDDs ranging from 68 to 98%. The ultrasonic extraction of PCDDs from XAD-2 was investigated and compared with other extractions. A probe type method was compared with a bath type. Two extraction solvents, toluene and acetone were compared with their mixture. The use of their mixture in probe type, with 9 minutes of extraction time, was found to be the optimum condition. The average recovery of the five PCDDs for USE was 82-93%. Accelerated solvent extraction (ASE) with a liquid solvent, a new technique for sample preparation, was performed under elevated temperatures and pressures. The effect of tem-perature on the efficiency of ASE was investigated. The extraction time for a 10 g sample was less than 15 min, when the organic solvent was n-hexaneacetone mixture (1 : 1, v/v). Using ASE, the average recoveries of five PCDDs ranged from 90 to 103%. SFE, USE, and ASE were faster and less laborious than Soxhlet extraction. The former three methods required less solvent than Soxhlet extraction. SFE required no concentration of the solvent extracts. SFE and ASE failed to perform simultaneous parallel extractions because of instrumental limitations.

Solvent Extraction of Cuprous and Cupric Chloride from Hydrochloric Acid Solutions by Alamine336 (염산용액에서 Alamine336에 의한 염화 제1, 2구리의 용매추출)

  • Lee, Man-seung;Lee, Jin-Young
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.297-303
    • /
    • 2009
  • Solvent extraction experiments of cupric and cuprous chloride with Alamine336 have been performed from HCl solution. In order to identify the solvent extraction reaction, distribution diagram of cupric and cuprous species with HCl concentration was obtained by considering complex formation reaction and the activity coefficient of solutes with Pitzer equation. Analysis of the solvent extraction data by graphical method together with the distribution diagram of copper indicated that solvent extraction reaction of copper with Alamine336 depends on HCl concentration. In strong HCl solution of 3 and 5 M, ${CuCl_4}^{2-}$ and ${CuCl_3}^{2-}$ took part in the solvent extraction reaction as Cu(II) and Cu(I), respectively. When HCl concentration was 1 M, ${CuCl_2}^-$ was extracted into the organic phase in the case of Cu(I) while adduct formation between $Cu^{2+}$ and Alamine336 was responsible for the solvent extraction reaction of Cu(II).

Determination of the Conditions for Anthocyanin Extraction from Purple-Flashed Sweet Potato (자색고구마 Anthocyanin 색소의 추출조건 결정)

  • 이장욱;이향희;임종환;조재선
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.5
    • /
    • pp.790-795
    • /
    • 2000
  • To establish the optimum conditions for the extraction of anthocyanin pigment from purple-fleshed sweet potato, a suitable extraction solvent with the optimum citric acid concentration for acidification of the solvent, and the optimum extraction time and temperature were determined. Twenty percent ethanol solution acidified with citric acid was found to be a good solvent for the extraction of the pigment from purple-fleshed sweet potato. About 10 hour extraction at room temperature was appropriate for the extraction. pH of the extract was below 3 when more than 0.7% citric acid was added. The higher the concentration of citric acid added was, the higher the total optical density (TOD) of the extract was. However, the increase in TOD of the extract was insignificant when more than 1% of citric acid was added. Therefore, addition of 1% citric acid was determined for acidification of the extracting solvent. Though the initial rate of the pigment extraction increased as the extracting temperature increased, extraction at higher temperatures of 60 or 8$0^{\circ}C$ for an extended time caused a decrease in the extraction yield due to degradation of the pigment. The optimum extraction temperature for the anthocyanin pigment from purple-fleshed sweet potato with the solvent used was determined as 4$0^{\circ}C$.

  • PDF

Optimization of Extraction of Astaxanthin from Portunus trituberculatus by Ionic Liquids (이온성 액체를 사용한 꽃게 껍질에서 아스타크산틴 추출 조건의 최적화)

  • Lee, Yu Jin;Lee, Yu Ri;Tang, Baokun;Row, Kyung Ho
    • KSBB Journal
    • /
    • v.28 no.4
    • /
    • pp.238-243
    • /
    • 2013
  • Astaxanthin is one of the carotenoid with strong antioxidant. The conditions of extraction of astaxanthin from Portunus trituberculatus were optimized in this work. Six factors of conditions such as, extraction method, extraction solvent, ratio of solvent to raw material, temperature, and time, were investigated. For the increase of the extraction yield, ionic liquids were used as additives in the extraction solvent. The optimum extraction conditions were found: heat reflux extraction, Dichloromethane/methanol (25:75, v/v) as solvent, 1:30 of the ratio of solvent raw material, $80^{\circ}C$, 90 min, and ionic liquid as additive. As a result, 45.81 ${\mu}g/g$ of astaxanthin was extracted from waste.

Optimization for Hot water Extraction Condition of Liriope spicata Tuber Using Response Surface Methodology (반응표면분석법에 의한 맥문동 열수추출 조건의 최적화)

  • 김순동;구연수;이인자;박인경;윤광섭
    • Food Science and Preservation
    • /
    • v.8 no.2
    • /
    • pp.157-163
    • /
    • 2001
  • Optimal conditions for hot water extraction of Liriope spicata tuber were investigated with changes in solvent ratio(2∼6 fold) and heating time(1∼5 hr) by response surface methodology. The content of extractable solids increased with an increased in solvent ratio, and the highest content showed at heating time of 3 hr. The content of total steroid saponin increased with a decrease in solvent ratio, and increased with an increase in heating time at increasing the solvent ratio. The content of non-reducing sugar containing oligosaccharides at a lower solvent ratio didn’t show changes depending on heating time, while that at a higher ration decreased with an increase in heating time. Optimal extraction conditions using hot water as the limited conditions of 15∼18% extractable solids, 1.5∼2.0% total steroid saponin, 6∼8% reducing sugar, 6∼7% non-reducing sugar and 13∼15 brix were 3 hrs of heating time and 4 fold of solvent ratio.

  • PDF

Solvent Extraction of Cobalt Chloride from Strong Hydrochloric Acid Solutions by Alamine336 (진한 염산용액에서 Alamine336에 의한 염화코발트의 용매추출)

  • Lee, Man-seung;Lee, Jin-Young
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.4
    • /
    • pp.227-232
    • /
    • 2008
  • Solvent extraction reaction of cobalt by Alamine336 from strong hydrochloric acid solution was identified by analyzing the solvent extraction data reported in the literature. Analysis of the data by graphical method revealed that Alamine336 took part in the solvent extraction reaction as a monomer in the concentration ranges, [Co(II)] : 0.0169 - 0.102 M, [Alamine336] ; 0.02- 1.75 M, and [HCl ] : 5 - 10 M. The following solvent extraction reaction and equilibrium constant was obtained from the experimental data by considering the activity coefficients of chemical species present in the aqueous phase. $Co^{2+}+2Cl^{-}+R_3NHCl_{org}=CoCl_3\;R_3NH_{org}$, $K_{ex}=2.21$ The distribution coefficients of cobalt predicted in this study agreed well with those reported in the literature.

Supercritical Carbon Dioxide Extraction of Oil from Chlorella vulgaris (초임계 이산화탄소를 이용한 Chlorella vulgaris의 오일 추출)

  • Ryu, Jong-Hoon;Park, Mi-Ran;Lim, Gio-Bin
    • KSBB Journal
    • /
    • v.26 no.5
    • /
    • pp.453-458
    • /
    • 2011
  • In this study, two different extraction techniques, organic solvent extraction and supercritical carbon dioxide ($SCCO_2$) extraction, were employed to evaluate the extraction efficiency of oil from Chlorella vulgaris. In the organic solvent extraction, the effects of various organic solvent on the extraction yield were investigated. The $SCCO_2$ extraction was carried out while varying such operating parameters as temperature, pressure, $SCCO_2$ flow rate, and cosolvent. About 4.9 wt% of oil was extracted from ground Chrollera vulgaris for 18 h when dichloromethane/methanol (2:1, v/v) was used as an extraction solvent. The oil yield of the $SCCO_2$ extraction was found to be very low (0.53 wt%) and to increase up to about 0.86 wt% with the addition of cosolvent.