• Title/Summary/Keyword: extraction rate constant

Search Result 71, Processing Time 0.02 seconds

Extraction of Glabridin from Licorice Using Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 감초 중의 glabridin 추출)

  • Cho Yun-Kyoung;Kim Hyun-Seok;Kim Ju-Won;Lee Sang-Yun;Kim Woo-Sik;Ryu Jong-Hoon;Lim Gio-Bin
    • KSBB Journal
    • /
    • v.19 no.6 s.89
    • /
    • pp.427-432
    • /
    • 2004
  • The purpose of this study is to investigate the feasibility of a cosolvent-modified supercritical $CO_2\;(scCO_2)$ extraction technique for the production of licorice extracts with high levels of glabridin. The effects of various parameters such as the type and amount of modifiers, extraction temperature ($40{\sim}80^{\circ}C$) and pressure ($10{\sim}50.0\;MPa$) on the extraction efficiency were examined at a fixed flow rate of 1 mL/min. The organic solvent extraction with pure methanol was also conducted for a quantitative comparison with the $scCO_2$ extraction. The recovery of glabridin from licorice was found to be extremely small for pure $scCO_2$. However, the addition of modifiers such as ethanol and acetone to $scCO_2$ resulted in a significant improvement in the recovery of glabridin. The recovery of glabridin was observed to increase with pressure at a constant temperature. Furthermore, the purity of the glabridin obtained from the $scCO_2$ extraction was higher compared with the organic solvent extraction.

Effect of Die Temperature and Dimension on Extract Characteristics of Extruded White Ginseng (사출구 온도와 구조에 따른 압출성형 백삼의 추출 특성)

  • Kim, Bong-Su;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.4
    • /
    • pp.544-548
    • /
    • 2005
  • The objective of this study was to determine the effect of die temperature and dimension on extraction pattern, extract yield, and crude saponin content of extruded white ginseng. The extrusion variables were die temperature $(110\;and\;120^{\circ}C)$ and die dimension (3 holes with 1.0 mm, 2 holes with 2.0 mm, and 1 hole with 3.0 mm diameter). The browness and redness were indicator of active components in ginseng extract. Both were used to evaluate the effect of die temperature and die dimension on release pattern and release rate constant. Browness and redness of extract achieved its lowest value at die temperature $110^{\circ}C$ and 2 holes with 2.0 mm diameter, indicating the lowest extraction rate constant. Extract yield highly increased by extrusion treatment. Extract yield and crude saponin content were the highest at die temperature $120^{\circ}C$ and 1 hole with 3.0 mm diameter. In conclusion, extrusion process has contributed significantly in improvement of release rate of its active components.

Extraction Process and Stability Characteristics of Soybean Peroxidase (Soybean peroxidase의 추출공정 및 안정성 특성)

  • 서경림;이은규
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.599-605
    • /
    • 1998
  • Soybean peroxidase was extracted from soybean hulls and purified by ammonium sulfate precipitations (25% and 75% saturation), pl fractionation, and anionic exchange and gel filtration chromatographies (DEAE-Sephadex A-50 and Superose 12). Modlecular weight and pl value were estimated to be ca. 45 kD and 4.2, respectively. Purified soybean peroxidase had an RZ value of 0.43. Compared with horseradish peroxidase, it showed superior thermal and pH stability. Assuming the first-order kinetics, the thermal deactivation rate constant of soybean peroxidase at 80$^{\circ}C$ was about 8 times lower than that of horseradish peroxidase. Deactivation energy was calculated to be 69.3 kcal/mol. Soybean peroxidase showed about 10% higher H2O2 degradation capacity than horseradish peroxidase. Exploiting these advantages, the soybean peroxidase purified from the domestic soybean hull is expected to replace horseradish peroxidase in various applications.

  • PDF

Thermal Energy Extraction from Phase Change Material - by Means of Finned Thermosyphon - (상변화 물질로부터의 열에너지 추출에 관한 연구 - 핀이 부착된 열싸이폰 이용에 관하여 -)

  • Mok, Jai-Kyun;Yoo, Jai-Suk;Kim, Ki-Hyun
    • Solar Energy
    • /
    • v.8 no.1
    • /
    • pp.5-12
    • /
    • 1988
  • One of the effective means to transfer the heat into and from the energy storage medium is thermosyphon. In this study, a two-phase closed thermosyphon with circular fins was used to extract the thermal energy stored in paraffin wax (Sunoco p-116). Heat transfer characteristics along the heat flow path were investigated as well as the overall performance. Some of the important results are as follows: (1) The temperature distribution of the wax in the radial direction was always maintained fairly uniformly; (2) Compared with bare thermosyphon, the heat transfer rate was vastly improved in the early stage of the experiment; and (3) Heat transfer coefficient between the wax and evaporating section of thermosyphon remained nearly constant during the experiment.

  • PDF

A Study on Modified DTW for the Dynamic Signature Verification (동적 서명인증을 위한 수정된 DTW 방법에 관한 연구)

  • Kim, Jin-Whan;Cho, Hyuk-Gyu;Cha, Eui-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.665-670
    • /
    • 2006
  • This paper deals with a modified method of the dynamic time warping and feature points to extract various important information of the signature for the dynamic signature verification. We could achieve lower equal error rate, small and efficient feature points and fast processing time for the notification.

Antioxidant Activity of the Extracts Derived from Korean Native Acer mono Max. (국내 자생 고로쇠 (Acer mono Max.) 추출물의 항산화 활성)

  • Seul, Eun Kyung;Zhoh, Choon Koo;Ryu, Hee Wook
    • KSBB Journal
    • /
    • v.32 no.2
    • /
    • pp.117-123
    • /
    • 2017
  • Maple tree is a useful medical plant for obtaining bioactive materials such as pharmaceutics, cosmetics, food additive, etc., and there are 16 species of native maple trees in Korea. In this study, we evaluated the antioxidant activity of sap and crude extracts of Acer mono Max, a representative maple species. The crude extracts were obtained by solvent extraction (water, ethanol, and ethyl acetate) from its branches (bark and xylem). The phenolic contents and radical scavenging capacities of the extracts and the sap were evaluated in terms of half maximal effective concentration ($EC_{50}$) and kinetics by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The ethanol extracts showed the highest extraction yield, phenolic contents and antioxidant activity, and bark extracts showed better antioxidant activity than xylem extracts. The antioxidant activity of the sap was very low, but the $EC_{50}$ of ethanol and ethyl acetate extracts ranged from 68 to $79{\mu}g/mL$, similar to that ($60{\mu}g/mL$) of the control, butylated hydroxytoluene (BHT). The DPPH radical scavenging rate ($220{\sim}760{\mu}M/min$) and the second-order reaction rate constant ($6.48{\sim}7.04L/g{\cdot}min$) of these extracts were better than those of BHT ($55{\sim}370{\mu}M/min$ and $3.60L/g{\cdot}min$). These results suggest that A. mono Max. is one of the useful bioresources for obtaining antioxidant biologically active substances, and it is possible to obtain physiologically active substances from by-product of its pruning while minimizing the effect on the growth of the tree.

Synthesis and characterization of poly(vinyl-alcohol)-poly(β-cyclodextrin) copolymer membranes for aniline extraction

  • Oughlis-Hammache, F.;Skiba, M.;Hallouard, F.;Moulahcene, L.;Kebiche-Senhadji, O.;Benamor, M.;Lahiani-Skiba, M.
    • Membrane and Water Treatment
    • /
    • v.7 no.3
    • /
    • pp.223-240
    • /
    • 2016
  • In this study, poly(vinyl-alcohol) and water insoluble ${\beta}$-cyclodextrin polymer (${\beta}$-CDP) cross-linked with citric acid, have been used as macrocyclic carrier in the preparation of polymer inclusion membranes (PIMs) for aniline (as molecule model) extraction from aqueous media. The obtained membranes were firstly characterized by X-ray diffraction, Fourier transform infrared and water swelling test. The transport of aniline was studied in a two-compartment transport cell under various experimental conditions, such as carrier content in the membranes, stirring rate and initial aniline concentration. The kinetic study was performed and the kinetic parameters were calculated as rate constant (k), permeability coefficient (P) and flux (J). These first results demonstrated the utility of such polymeric membranes for environmental decontamination of toxic organic molecules like aniline. Predictive modeling of transport flux through these materials was then studied using design of experiments; the design chosen was a two level full factorial design $2^k$. An empirical correlation between aniline transport flux and independent variables (Poly ${\beta}$-CD membrane content, agitation speed and initial aniline concentration) was successfully obtained. Statistical analysis showed that initial aniline concentration of the solution was the most important parameter in the study domain. The model revealed the existence of a strong interaction between the Poly ${\beta}$-CD membrane content and the stirring speed of the source solution. The good agreement between the model and the experimental transport data confirms the model's validity.

Implementation of Infinite Boundary Condition Considering Superposed Theory on SVE Remediation System (토양증기추출복원 시스템에서 중첩이론을 고려한 무한 경계조건 실행)

  • Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.3
    • /
    • pp.9-16
    • /
    • 2007
  • Soil vapor extraction (SVE) is an effective and cost efficient method of removing volatile organic compounds (VOCs) and petroleum hydrocarbons from unsaturated soils. Incorporating PVDs in an SVE system can extend the effectiveness of SVE to lower permeability soils by shortening the air flow-paths and ultimately expediting contaminant removal. With this approach, the real bounded system is replaced for the purposes of analysis by an imaginary system of infinite areal extent. The boundary conditions for the contaminant remediation model test include constant head and no flow condition. Due to these parallel boundaries conditions, image wells should be developed in order to maintain the condition of no flow across the impermeable boundary. It is also assumed that the flow is drawdown along the constant head boundary condition. The factors contributing to the difference between the theoretical and measured pressure heads were also analyzed. The flow factor increases as the flow rate is increased. The flow rate is the most important factor that affects the difference between the measured and theoretical pressure heads.

  • PDF

Pharmacokinetics of ciprofloxacin in chickens (닭에서 ciprofloxacin의 체내 동태에 관한 연구)

  • Kang, Hwan-goo;Cho, Myung-haing;Lee, Hang;Han, Myung-guk;Son, Seong-wan;Kim, Jae-hak;Lee, Jae-jin
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.3
    • /
    • pp.471-480
    • /
    • 1995
  • The purpose of this experiment was to develop a simple and reliable HPLC method for the detection of ciprofloxacin in chicken serum and to provide a basic data on pharmacokinetic parameters after oral and intramuscular administration. The results obtained were as follows: 1. 0.2% meta-phosphoric acid: acetonitrile(7:3, v/v) solution had a high and regular recovery rates and was selected as an extraction solution. 2. The recovery rates of ciprofloxacin were 83-97% with the selected solution in chicken serum and the detection limit was 50ng/ml in serum. 3. Ka(abosorption rate constant) were 3.652 1/h in fasted group and 0.880 1/h in non-fasted group, and Ke (elimination rate constant) were 0.061 1/h and 0.133 1/h, respectively. 4. The highest concentration in serum after intramuscular injection was 840ng/ml within 15-30min and 160-324ng/ml in 1.1-3.2 hours after oral administration. 5. The time course of blood concentration fits well into a 2 compartment model. 6. On oral administration of ciprofloxacin with feed, ciprofloxacin was absorbed more slowly and the amount of absorbed was smaller than that of in fasted chickens. 7. Blood concentration of ciprofloxacin increased in a dose-dependent manner after intramusclular and oral administraiton.

  • PDF

Separation of Protein and Fatty Acids from Tuna Viscera Using Supercritical Carbon Dioxide

  • Kang Kil-Yoon;Ahn Dong-Hyun;Jung Sun-Mi;Kim Dong-Hun;Chun Byung-Soo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.315-321
    • /
    • 2005
  • Supercritical carbon dioxide extraction was investigated as a method for removing lipids and bad flavor from tuna viscera. To find the optimum conditions, different experimental variables, such as pressure, temperature, flow rate of solvent and sample size, were evaluated for the effective removal of lipids and the undesirable smell. Ethanol was used as the entrainer, with a $3\%$ by vol $CO_2$ flow rate. By increasing the pressure at constant temperature, the efficiency of the lipid removal was improved and the protein was concentrated without denaturalization. The main fatty acids extracted from the tuna viscera were palmitic acid (16:0), heptadecanoic acid (17:1), oleic acid (18:1) and docosahexaenoic acid (22:6). The major amino acids in the tuna viscera treated by supercritical carbon dioxide were glutamic acid, leucine and lysine, and the free amino acids were L-proline, taurine and L-$\alpha$-aminoadipic acid.