• Title/Summary/Keyword: extraction of antler residue

Search Result 3, Processing Time 0.019 seconds

Extraction of Freeze Dried Young Antler Residue by Proteases and HCl (단백질 가수분해 효소 및 염산에 의한 녹용 각질의 추출)

  • 안용근
    • The Korean Journal of Food And Nutrition
    • /
    • v.16 no.4
    • /
    • pp.388-396
    • /
    • 2003
  • The freeze dried young antler residue was extracted by proteases and hydrochloric acid(HCl). The young antler was extracted by water at 50$^{\circ}C$ and the residue was reacted by proteases for 5 hours at 50$^{\circ}C$. The extraction rate of its residue was 32.8%(absorbance 3.61 at 280nm) of bacteria protease, 23.8%(absorbance 0.69) of papain, and 31.2% (absorbance 2.96) of pepsin. The young antler was extracted by boiling water and the residue was reacted by proteases for 5 hours at 50$^{\circ}C$. The extraction rate of its residue was 45.0%(absorbance 3.61) of bacteria protease, 30.4%(absorbance 0.33) of papain, and 51.2% (absorbance 2.77) of pepsin. The result of HPLC analysis reveals that in 50$^{\circ}C$ water extract and boiling water extract, all high molecular peak was reduced under MW 1,000 by proteases. The result from the extract of young antler residue reacted by HCl for 5 hours at 50$^{\circ}C$ shows that its extraction rate was 45% (absorbance 0.78) in concentration of 0.1N HCl, 61% (absorbance 1.82) in 0.2N, 81% (absorbance 2.29) in 0.4N, and 82.0% (absorbance 3.28) in 2.0N. The result of HPLC analysis also reveals that in the extract by 0.8N HCl, the peak of about MW 70,000 accounted for 78% in total. Protein content of the extract by 0.8N HCl was 8.2%, and content of amino acid was 81.6%, ash was 1.3%, and mineral contents were 0.1 % of Ca, 2.3% of P, 0.8 % of Mg, 3.4% of Na, 0.002% of F by dry base.

Extraction of Young Antler and Antler by Water, Proteases and HCl (녹용 및 녹각의 단백질 가수분해 효소 및 염산에 의한 가용화)

  • 안용근
    • The Korean Journal of Food And Nutrition
    • /
    • v.17 no.2
    • /
    • pp.147-155
    • /
    • 2004
  • Freeze dried antler, heat dried antler, antler were extracted through processing step by water, protease and hydrochloric acid(HCl). Extraction rate of freeze dried antler at 50$^{\circ}C$ by water was 9.01%(8.82, absorbance at 280 nm), that of heat dried antler was 9.01%(4.45, absorbance at 280 nm), and that of antler was 1.10%(0.31, absorbance at 280 nm), respectively. Extraction rate of freeze dried antler by bacterial protease was 16.89%(4.50, absorbance at 280 nm), and that of heat dried antler was 17.29%(5.62, absorbance at 280 nm), and that of antler was 18.22%(0.64, absorbance at 280 nm), respectively. Extraction rate of freeze dried antler by 0.8N HCl was 72.25%(4.60, absorbance at 280 nm), that of heat dried antler was 71.14%(4.70 absorbance at 280 nm), and that of antler was 79.82% (2.80, absorbance at 280 nm), respectively. Extraction rate of freeze dried antler through three processing steps was 98.15%, that of heat dried antler was 97.35%, that of antler was 99.14%, respectively. The result of analysis by HPLC shows that high molecular pe which appears in young antler and antler extraction was changed into a small molecular peak of about 1,000 by the reaction of protease, and protein of about MW 70,000 was extracted from their remaining residue by 0.8N HCl. The above result shows that water extraction and protease extraction in the freeze dried young antler, protease extraction and HCl extraction in dried young antler, and HCl extraction in antler are most effective.

Composition of Biologically Active Substances and Antioxidant Activity of New Zealand Deer Velvet Antler Extracts

  • Je, Jae-Young;Park, Pyo-Jam;Kim, Eun-Kyung;Kim, Hyun-A;Lim, Dong-Hwan;Jeon, Byong-Tae;Ahn, Chang-Bum
    • Food Science of Animal Resources
    • /
    • v.30 no.1
    • /
    • pp.20-27
    • /
    • 2010
  • Deer velvet antler was subjected to the extraction process using boiling water at three different temperatures (100, 110 and $120^{\circ}C$) and 70% ethanol solution. Functional components such as uronic acid, sulfated-glycosaminoglycans (sulfated-GAGs) and sialic acid in the extracts were analyzed, and their antioxidant activities were investigated using several in vitro models. Uronic acid and sulfated-GAGs content of each extract significantly decreased with increasing extraction temperature (p<0.05), while the residues obtained from the upper and middle part of the antler had a higher uronic acid content than the residues obtained from the base section. Sialic acid contents were highest in compounds extracted at $110^{\circ}C$, followed by 120 and $100^{\circ}C$. The 70% ethanol extracts also had a high levels of uronic acid content, but not for sulfated-GAGs and sialic acid. All extracts showed good antioxidant ability in a dose-dependant manner, with the $100^{\circ}C$ residue exhibiting the strongest activity compared to the 110 and $120^{\circ}C$ extracts. In relation to the hydroxyl radical scavenging activity and reduction power, the 70% ethanol extract exhibited the strongest activity. Furthermore, the velvet antler extracts inhibited apoptosis in hydrogen peroxide-induced PC-12 cells.