• Title/Summary/Keyword: extracellular polymer

Search Result 53, Processing Time 0.023 seconds

FUNGAL EXTRACELLULAR POLYSACCHARIDES INVOLVED IN RECYCLING OF METABOLITES AND OSMOTOLERANCE OF PENICILLIUM FELLUTANUM : APPLICATION OF $^{13}$ C-NMR SPECTROSCOPY FOR THE STUDY ON FUNGAL PHYSIOLOGY AND METABOLISM

  • Park, Yong-Il;Gander, John.-E.
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.208-213
    • /
    • 2000
  • Penicillium fellutanum produces a phosphorylated, choline-containing extracellular peptido-polysaccharide, peptidophosphogalactomannan (pPxGM) (8). The $\^$13/C-methyl labeled pPxGM ([methyl-$\^$13/C]pPxGM) was prepared from the cultures supplemented with L-[methyl-$\^$13/C]methionine or [2-$\^$13/C]glycine and was used as a probe to monitor the fate of phosphocholine in this polymer. Addition of purified [methyl-$\^$l3/C]pPxGM to growing cultures in low phosphate medium resulted in the disappearance of [methyl-$\^$13/C]phosphocholine and -N,N'-dimethyl-phosphoethanolamine from the added [methyl-$\^$13/C]pPxGM. Two $\^$l3/C-methyl-enriched cytoplasmic solutes, choline-O-sulfate and glycine betaine, were found in mycelial extracts, suggesting that phosphocholine-containing extracellular pPxGM of P.fellutanum is a precursor of intracellular choline-O-sulfate and glycine betaine and thus of phosphatydilcholine (l0). $\^$13/C-Methyl-labeled cells grown in 3 M NaCl-containing medium showed 2.6- and 22-fold more accumulation of $\^$13/C-methyl labeled choline-O-sulfate and glycine betaine, respectively, originated from the extracellular [$\^$13/C-methyl]pPxGM than those grown without added NaCl. The results suggest that, in addition to glycerol and erythritol, glycine betaine and choline-O-sulfate and thus choline are also osmoprotectants and hence that pPxGM is involved in osmotolerance of this fungus (11). Taken collectively, the $\^$l3/C- and $\^$31/P-NMR analyses of cytosolic solute pools and structural modulation of extracellular pPxGM corresponding to environmental stimuli in P. fellutanum, provided evidence that pPxGM is involved in cellular choline metabolism, osmotolerance, and recycling of metabolites.

  • PDF

Biodegradable Polymers for Tissue Engineering : Review Article (조직 공학용 생분해성 고분자 : 총설)

  • Park, Byoung Kyeu
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.251-263
    • /
    • 2015
  • Scaffolds play a crucial role in the tissue engineering. Biodegradable polymers with great processing flexibility and biocompatability are predominant scaffolding materials. New developments in biodegradable polymers and their nanocomposites for the tissue engineering are discussed. Recent development in the scaffold designs that mimic nano and micro features of the extracellular matrix (ECM) of bones, cartilages, and vascular vessels are presented as well.

Radial Flow Type Bioreactor for Bioartificial Liver Assist System using PTFE Non-Woven Fabric Coated with Poly-amino Acid Urethane Copolymer

  • Miskon, Azizi;Yamaoka, Tetsuji;Uyama, Hiroshi;Kodama, Makoto
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.259-259
    • /
    • 2006
  • PAU is the block copolymer consists of a small amount of a small amount of poly(${\gamma}-methyl-L-glutamate$) (PMLG) and the polyurethane. The urethane segments are hydrophobic and then strongly interact with the other hydrophobic materials such as PTFE, and the PMLG segments with the ${\alpha}-helix$ structure possess the cytocompatibility. Therefore, PAU can be easily coated onto the PTFE fiber and acts as an artificial extracellular matrix with the high cytocompatibility Results shows, the immobilization, cultured and functions of porcine hepatocytes is greatly improved.

  • PDF

Isolation of a Polysaccharide Producing Bacterium and Properties of Its Polysaccharide (다당류 생산세균의 분리동정 및 그 물질의 특성)

  • Yoo, Jin-Young;Chung, Dong-Hyo
    • Applied Biological Chemistry
    • /
    • v.32 no.3
    • /
    • pp.303-308
    • /
    • 1989
  • A bacterium synthesizing extracellular polysaccharide was isolated from soil and identified as Enterobacter agglomerans. The polysaccharide was found to be glucan polymer containing glucose and galactose in a molar ratio of 1 : 1.1. The aqueous solution was very viscous. The viscosity of 1% solution was 264 mPa.s. at $42\;sec^{-1}$ and yield stress was 4.89 Pa. The polysaccharide solution did not have thermal stability but pH and salt stability.

  • PDF

Temperature-responsive bioactive hydrogels based on a multifunctional recombinant elastin-like polymer

  • Santo, Vitor E.;Prieto, Susana;Testera, Ana M.;Arias, Francisco J.;Alonso, Matilde;Mano, Joao F.;Rodriguez-Cabello, Jose Carlos
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.1
    • /
    • pp.47-59
    • /
    • 2015
  • A bioactive and multifunctional elastin-like polymer (ELP) was produced by genetic engineering techniques to develop new artificial matrices with the ability to mimic the extracellular matrix (ECM). The basic composition of this ELP is a thermo- and pH-sensitive elastin pentapeptide which has been enriched with RGD-containing domains, the RGD loop of fibronectin, for recognition by integrin receptors on their sequence to promote efficient cell attachment. Hydrogels of this RGD-containing polymer were obtained by crosslinking with hexamethylene diisocyanate, a lysine-targeted crosslinker. These materials retain the "smart" nature and temperature-responsive character, and the desired mechanical behavior of the elastin-like polymer family. The influence of the degree of crosslinking on the morphology and properties of the matrices were tested by calorimetric techniques and scanning electron microscopy (SEM). Their mechanical behavior was studied by dynamical mechanical analysis (DMA). These results show the potential of these materials in biomedical applications, especially in the development of smart systems for tissue engineering.

Polymer Nanofibers for Biomedical Engineering

  • Shin, Min-Kyoon;Kim, Seon-Jeong;Kim, In-Young;Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.3
    • /
    • pp.173-178
    • /
    • 2008
  • Recent advancements in the electrospinning method enable the production of ultrafine solid and continuous fibers with diameters ranging from a few nanometers to a few hundred nanometers with controlled surface and morphological features. A wide range of biopolymers can be electrospun into mats with a specific fiber arrangement and structural integrity. These features of nanofiber mats are morphologically similar to the extracellular matrix of natural tissues, which are characterized by a wide pore diameter distribution, a high porosity, effective mechanical properties, and specific biochemical properties. This has resulted in various kinds of applications for polymer nanofibers in the field of biomedicine and biotechnology. The current emphasis of research is on exploiting these properties and focusing on determining the appropriate conditions for electrospinning various biopolymers for biomedical applications, including scaffolds used in tissue engineering, wound dressing, drug delivery, artificial organs, and vascular grafts, and for protective shields in specialty fabrics. This paper reviews the research on biomedical applications of electrospun nanofibers.

Characteristics of Thermophilic Bacteria and Secondary Materials Attached on the Pyrrhotite, Uljin (울진 자류철석 표면에 부착한 고온성박테리아와 2차 생성물의 특성)

  • Park, Cheon-Young;Kim, Bong-Ju
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.315-329
    • /
    • 2010
  • Characteristics of thermophilic bacteria and secondary materials on the pyrrhotite surface were investigated by using scanning electron microscopy (SEM). The thermophilic bacteria from an acid hot spring in Japan were incubated with pyrrhotite at $42^{\circ}C$, $52^{\circ}C$, and $62^{\circ}C$ respectively. SEM analysis of the reacted pyrrhotite showed that indigenous rod-shaped bacteria ranging from $0.4{\times}1.5{\mu}m$ to $0.3{\times}11.9{\mu}m$ in size were attached to the pyrrhotite surface at these temperatures with formation of secondary materials. Extracellular polymer substances were formed on the bacterial surface. We suggest that these polymers functioned as a capsule protecting bacteria from the extreme environment. Secondary materials such as elemental sulfur, Fe-hydroxide, S-Fe and O-P-Fe compounds were found on the pyrrhotite surface.

Purification and Characterization of an Extracellular Levansucrase from Zymomonas mobilis ZM1(ATCC 10988). (Zymomonas mobilis ZM1이 생산하는 균체외 Levansucrase의 정제 및 특성)

  • 송기방;서정우;주현규;이상기
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.4
    • /
    • pp.309-315
    • /
    • 1998
  • An extracellular levansucrase, which catalyzes the formation of levan from sucrose, from the culture broth of Zymomonas mobilis ZM1 was purified by conventional column purification methods. The final purification yield was 18.3 fold of the crude enzyme from Z. mobilis, with 16.5 % of the enzyme recovered in the preparation step. The molecular weight of the enzyme was estimated to be 91,000 by Superose 12 gel filtration, and 45,000 by SDS-PAGE, indicating that levansucrase is a dimer. The optimum pH for the enzyme activity was around pH 4.0 for sucrose hydrolysis, and was around pH 5.0 for levan formation. The enzyme was inhibited by some metal ions, such as Hg$\^$2+/ and Cu2$\^$2+/, and 50% of inhibition was observed with 5mM EDTA. The enzyme activity was enhanced by the presence of detergent Triton X-100, but inhibited by SDS completely The enzyme catalyzes the liberation of reducing sugars, oligosacccharides and the formation of fructose polymer(levan). The enzyme also catalyzes the transfructosylation reaction of fructose moiety from sucrose to various sugar acceptor molecules, including sugar alcohols.

  • PDF

The Effect of a Long-Term Cyclic Strain on Human Dermal Fibroblasts Cultured in a Bioreactor on Chitosan-Based Scaffolds for the Development of Tissue Engineered Artificial Dermis

  • Lim, Sae-Hwan;Son, Young-Sook;Kim, Chun-Ho;Shin, Heung-Soo;Kim, Jong-Il
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.370-378
    • /
    • 2007
  • Mechanical stimulation is known to activate several cellular signal transduction pathways, leading to the induction of signaling molecules and extracellular matrix (ECM) proteins, thereby modulating cellular activities, such as proliferation and survival. In this study, primary human dermal fibroblasts (HDFs) were seeded onto chitosan-based scaffolds, and then cultured for 3 weeks in a bioreactor under a cyclic strain of 1 Hz frequency. Compared to control samples cultured under static conditions, the application of a cyclic strain stimulated the proliferation of HDFs in I week, and by week 3 the thickness of the cell/scaffold composites increased 1.56 fold. Moreover, immunohistochemical staining of the culture media obtained from the cell/scaffold samples subjected to the cyclic strain, revealed increases in the expression and secretion of ECM proteins, such as fibronectin and collagen. These results suggest that the preconditioning of cell/scaffold composites with a cyclic strain may enhance the proliferation of HDFs, and even facilitate integration of the engineered artificial dermal tissue into the host graft site.

Effect of Demineralized Bone Particle Gel Penetrated into Poly(lactic-co-glycolic acid) Scaffold on the Regeneration of Chondrocyte: In Vivo Experiment (PLGA 다공성 지지체에 함침시킨 DBP젤의 연골재생 효과: In Vivo 실험)

  • Lee, Yun Mi;Shim, Cho Rok;Lee, Yujung;Kim, Ha Neul;Jo, Sun A;Song, Jeong Eun;Lee, Dongwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.789-794
    • /
    • 2012
  • Poly(lactic-co-glycolic acid) (PLGA) has been most widely used due to its advantages such as good biodegradability, controllable rate of degradation and metabolizable degradation products. We manufactured composite scaffolds of PLGA scaffold penetrated DBP gel (PLGA/DBP gel) by a simple method, solvent casting/salt leaching prep of PLGA scaffolds and subsequent soaking in DBP gel. Chondrocytes were seeded on the PLGA/DBP gel. The mechanical strength of scaffold, histology (H&E, Safranin-O, Alcian-blue) and immunohistochemistry (collagen type I, collagen type II) were performed to elucidate in vitro and in vivo cartilage-specific extracellular matrices. It was better to keep the characteristic of chondrocytes in the PLGA/DBP gel scaffolds than that PLGA scaffolds. This study suggests that PLGA/DBP gel scaffold may serve as a potential cell delivery vehicle and a structural basis for in vivo tissue engineered cartilage.