• 제목/요약/키워드: extracellular enzyme

검색결과 684건 처리시간 0.031초

Biotransformation of Protopanaxadiol-Type Ginsenosides in Korean Ginseng Extract into Food-Available Compound K by an Extracellular Enzyme from Aspergillus niger

  • Jeong, Eun-Bi;Kim, Se-A;Shin, Kyung-Chul;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권10호
    • /
    • pp.1559-1566
    • /
    • 2020
  • Compound K (C-K) is one of the most pharmaceutically effective ginsenosides, but it is absent in natural ginseng. However, C-K can be obtained through the hydrolysis of protopanaxadiol-type ginsenosides (PPDGs) in natural ginseng. The aim of this study was to obtain the high concentration of food-available C-K using PPDGs in Korean ginseng extract by an extracellular enzyme from Aspergillus niger KACC 46495. A. niger was cultivated in the culture medium containing the inducer carboxymethyl cellulose (CMC) for 6 days. The extracellular enzyme extracted from A. niger was prepared from the culture broth by filtration, ammonium sulfate, and dialysis. The extracellular enzyme was used for C-K production using PPDGs. The glycoside-hydrolyzing pathways for converting PPDGs into C-K by the extracellular enzyme were Rb1 → Rd → F2 → C-K, Rb2 → Rd or compound O → F2 or compound Y → C-K, and Rc → Rd or compound Mc1 → F2 or compound Mc → C-K. The extracellular enzyme from A. niger at 8.0 mg/ml, which was obtained by the induction of CMC during the cultivation, converted 6.0 mg/ml (5.6 mM) PPDGs in Korean ginseng extract into 2.8 mg/ml (4.5 mM) food-available C-K in 9 h, with a productivity of 313 mg/l/h and a molar conversion of 80%. To the best of our knowledge, the productivity and concentration of C-K of the extracellular enzyme are the highest among those by crude enzymes from wild-type microorganisms.

Extracellular Enzyme Activities of the Monokaryotic Strains Generated from Basidiospores of Shiitake Mushroom

  • Kwon, Hyuk-Woo;Back, In-Joung;Ko, Han-Gyu;You, Chang-Hyun;Kim, Seong-Hwan
    • Mycobiology
    • /
    • 제36권1호
    • /
    • pp.74-76
    • /
    • 2008
  • To obtain basic information on the biochemical property of basidiospores of shiitake mushroom (Lentinula edodes), the ability of producing extracellular enzyme was assessed using a chromogenic plate-based assay. For the aim, amylase, avicelase, $\beta$-glucosidase, CM-cellulase, pectinase, proteinase, and xylanase were tested against monokaryotic strains generated from forty basidiospores of two different parental dikaryotic strains of shiitake mushroom, Sanjo-101Ho and Sanjo-108Ho. These two parental strains showed different degree of extracellular enzyme activity. No identical patterns of the degree of enzyme activity were observed between monokaryotic strains and parental strains of the two shiitake cultivars. The degree of extracellular enzyme activity also varied among monokaryotic strains of the two shiitake cultivars. Our results showed that dikaryotic parental strains of shiitake mushroom produce monokaryotic basidiospores having very diverse biochemical properties.

Sesquicillin, an Extracellular Matrix Adhesion Inhibitor, Inhibits the Invasion of B16 Melanoma Cells In vitro

  • Lee, Ho-Jae;Chun, Hyo-Kon;Chung, Myung-Chul;Lee, Choong-Hwan;Kho, Yung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권1호
    • /
    • pp.119-121
    • /
    • 1999
  • Tumor cell interaction with the extracellular matrix is defined as the critical event of tumor invasion that signals the initiation of a metastatic cascade. Sesquicillin has been identified as an inhibitor of melanoma cell adhesion to the components of the extracellular matrix (ECM) in cultured broth of fungal strain F60063. Sesquicillin strongly inhibited the adhesion of B16 melanoma cells to laminin, fibronectin, and typeIV collagen. It also inhibited B16 melanoma cell invasion of reconstituted basement membrane Matrigel in vitro in a dose-dependent manner. These results suggest that sesquicillin is a new class of nonpeptidic ECM adhesion inhibitor having anti-invasive activity.

  • PDF

신규 고온성 Geobacillus sp. AR1의 extracellular 지질분해효소 생산을 위한 배양조건 (Culture Conditions for Improving Extracellular Lipolytic Enzyme Production by a Novel Thermophilic Geobacillus sp. AR1)

  • 박수진;전숭종
    • 생명과학회지
    • /
    • 제23권1호
    • /
    • pp.110-115
    • /
    • 2013
  • Extracellular 지질분해효소를 생산하는 균주 AR1은 일본 벳부 온천수에서 분리하였다. 분리된 균주의 16s rRNA 염기서열을 분석하고 계통학적으로 분류한 결과, AR1 균주는 신규 Geobacillus sp.에 속하는 것으로 동정되었다. 본 연구는 Geobacillus sp. AR1 균주의 extracellular 지질분해효소 생산을 향상시키기 위한 새로운 방법에 초점을 맞추었다. AR1 균주는 $35{\sim}75^{\circ}C$의 넓은 온도 범위에서 생육하였고 최적온도는 $65^{\circ}C$이었다. 생육을 위한 최적 pH는 6.5인 반면, 효소 생산을 위한 pH는 8.5로 차이점을 보였다. 배양 중에 지질 화합물의 첨가는 지질분해효소 생산을 유도하였고, soybean oil을 대수증식기에 첨가 했을 때 가장 효율적인 유도 효과를 나타내었다. 한편, 계면활성제는 지질분해효소의 생산을 유도하고 세포 내외의 위치에 영향을 줄 수 있다. AR1 균주는 정지기에 Tween 20을 첨가할 경우, 효소의 세포 외 분비 효율이 크게 증가하였다. 이들 결과를 바탕으로 soybean oil과 Tween 20을 각각 대수증식기와 정지기에 첨가함에 따라 extracellular 효소 생산이 대조구에 비해 2.4배 증가하는 것으로 확인 되었다.

Kluyveromyces marxianus 가 생산하는 Intracellular 및 Extracellular Inulase 의 정제 및 특성비교 (Purification and Characterization of Intracellular and Extracellular Inulase from Kluyveromyces marxianus)

  • 김수일;문항식
    • Applied Biological Chemistry
    • /
    • 제30권2호
    • /
    • pp.169-178
    • /
    • 1987
  • Kluyveromyces marxianus로 부터 inulase를 생산하고 정제하며 intra 및 extracellular inulase의 성질을 조사하였다. 본 균주는 stationary phase인 24시간째 intra 및 extracelullar enzyme의 생산이 최고에 달했으며 유기 질소원으로 YNB를 사용하고 배양 중 pH를 조절해 줌으로써 효소 생산을 향상시킬 수 있었다. 조효소는 DEAE-cellulose에 의해 intra 및 extracellular inulase 모두 2개의 fraction으로 분리되었고 각 fraction의 전기영동 양상은 비슷하여 주 band를 비롯 모두 3개의 glycoprotein band가 관찰되었으며 이중 주 band만 inulase 및 invertase activity를 보유하고 있었다. 정제 효소의 inulase 및 invertase의 최적 pH는 각각 5.0과 4.5였고 intra가 extracellular enzyme 에 비해 다소 넓은 범위의 pH에서 높은 활성을 나타내었다. 모든 fraction의 최적 온도는 inulase가 $40^{\circ}C$, invertase가 $50^{\circ}C$였으며 intracellular enzyme이 더 넓은 범위의 온도에서 안정하였고 열에 대한 안정성도 intracellular inulase가 extracellular inulase보다 높게 나타났다. Km value는 intra가 $16{\sim}19mM$, extracellular inulase가 $9{\sim}11mM$로써 extracellular inulase가 inulin에 대한 친화력이 더 높았으나 모두 exo-type의 inulase로 판명되었다.

  • PDF

Purification and Biochemical Properties of Extracellular Phospholipase $A_1$ from Serratia sp. MK1

  • Kim, Myung-Kee;Rhee, Joon-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • 제6권6호
    • /
    • pp.407-413
    • /
    • 1996
  • A novel type of extracellular phospholipase $A_1$ was isolated from Serratia sp. MK1 and purified to homogeneity by ammonium sulfate precipitation, anion exchange and gel filtration chromatography. The purified enzyme was a monomer with a molecular mass of about 43, 000 Da. This enzyme showed the highest lipolytic activity toward phosphatidylserine among the phosphoglycerides tested, and preferentially catalyzed the hydrolysis of the ester bond in phosphatidic acid to lyso-phosphatidic acid. Enzyme activity was completely inhibited by the addition of a chelating agent such as EDTA, and inhibited enzyme activity was fully recovered by the presence of $Ca^{2+}$. This implies that the enzyme requires $Ca^{2+}$ for activity. The enzyme was stable up to $70^{\circ}C$ when incubated for 1 h at pH 8.5, and the optimal pH and temperature were 8.5 and $50^{\circ}C$, respectively.

  • PDF

Bacillus polymyxa YL38-3의 세포외 cytosine deaminase 생성의 최적 배양 조건 (Optimum culture conditions for production of extracellular cytosine deaminase by bacellus polymyxa YL 38-3)

  • 유대식;김대현;박정문;송형익;정기택
    • 미생물학회지
    • /
    • 제26권4호
    • /
    • pp.362-367
    • /
    • 1988
  • The strain YL 38-3, which was capable of producing extracellular cytosine deaminase, was isolated and taxonomically examined. The isolated strain was identified to be Bacillus polymyxa YL 38-3. The optimal conditions for the enzyme production from Bacillus polymyxa YL 38-3 were investigated. The enzyme production was reached maximum level in the medium containing 0.5% glucose, 0.2% beef extract, 0.5% NaCl and 0.1% $KH_{2}PO_{4}$ (pH 6.0). And the enzyme showed the highest activity when the strain YL 38-3 was cultivated at $35^{\circ}C$ for 24 gours under the initial pH 6.0. By the additions of peptone the extracellular enzyme production was inhibited, meanwhile the intracellular enzyme production was highly stimulated. It was, therefore, deduced that peptone was related to the secretion mechanism of the enzyme from this bacterial cell.

  • PDF

담수환경에서 분리한 곰팡이의 세포외분해효소 활성 탐색 (Evaluation of Extracellular Enzyme Activity of Fungi from Freshwater Environment in South Korea)

  • 문혜연;오유선;고재덕
    • 한국균학회지
    • /
    • 제51권4호
    • /
    • pp.265-276
    • /
    • 2023
  • 본 연구는 담수 환경에서 분리한 곰팡이의 특성을 알아보기 위해 효소 활성을 평가하였다. 40개의 곰팡이들은 다양한 담수 시료로부터 분리되었으며, 계통분석을 통해 동정하였다. 실험에 사용된 균주들은 최근에 국내에 보고되었거나, 아직 보고되지 않은 종으로서 이에 대한 특성 정보가 거의 알려지지 않았다. 본연구에서는 40개 균주를 대상으로 protease, amylase, lipase, cellulase, laccase, chitinase의 효소에 대해서 활성을 검정하였다. 대부분의 균주가 laccase 활성을 보였으며, protease, amylase 순으로 높게 나타났다. 담수 환경에서의 효소 활성 정보는 이들의 생태적 역할을 이해하고 산업적으로 활용하는데 기여할 수 있을 것이다.

Studies on Microbial Extracellular $\beta$-Gala-ctosidase

  • Lee, Keun-Eok
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 1979년도 춘계학술대회
    • /
    • pp.113.2-114
    • /
    • 1979
  • $\beta-Galactosidase$ is an enzyme which catalizes hydrolysis of lactose, a natural substrate, to glucose and galctose and transferring some monosac-charide units to active acceptors as sugar or alcohol. The occurence of $\beta-Galactosidase$ is known in various microorganisms, animals and higher plants and has been studied by many investigatigators. Especially, a great deal of articles for the enzyme of E. coli have been presented in genetic control mechanism and induction-repression effects of proteins, On the other hand, in the dairly products industry, it is important to hydrolyes lactosd which is the principal sugar of milk and milk products. During the last few years, the interest in enzymatic hydrolysis of milk lactose has teen increased, because of the lactose intolerence in large groups of the population. Microbial $\beta-Galactosidases$ are considered potentially most suitable for processing milk to hydrolyse lactose and, in recent years, the immobilized enzyme from yeast has been examined. Howev, most of the microbial $\beta-Gal$ actosidase are intracellular enzymes, except a few fungal $\beta-Gala-$ ctosidases, and extracellular $\beta-Galactosidase$ which may be favorable to industrial applieation is not so well investigated. On this studies, a mold producing a potent extracellular $\beta-Galactosidase$ was isolated from soil and identified as an imperfect fungus, Beauveria bassians. In this strain, both extracellular and intracellular $\beta-Galactosidases$ were produced simultaneously and a great increase of the extracellular production was acheved by improving the cultural conditions. The extracellular enzyme was purified more than 1, 000 times by procedures including Phosphocellulose and Sephadex G-200 chromatographies. Several characteristics of the enzymewas clarified with this preparation. The enzyme has a main subunit of molecular weight of 80, 000 which makes an active aggregate. And at neutral pH range, it has optimum pH for activity and stability. The Km value was determined to be 0.45$\times$10$^{-3}$ M for $o-Nitrophenyl-\beta-Galactoside.$ In any event, it is interesting to sttudy the $\beta-Galactosidase$ of B. bassiana for the mechanism of secretion and conformational structure of enzyme.

  • PDF

The Production and Enzymatic Properties of Extracellular Chitinase from Pseudomonas stutzeri YPL-1, as a Biocontrol Agent

  • Lim, Ho-Seong;Kim, Sang-Dal
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권2호
    • /
    • pp.134-140
    • /
    • 1994
  • An antagonistic bacterium Pseudomonas stutzeri YPL-1 liberated extracellular chitinase and $\beta$-1,3-glucanase which are key enzymes in the decomposition of fungal hyphal walls. The lytic enzymes caused abnormal swelling and retreating at the hyphal tips of plant pathogenic fungus Fusarium solani in a dual culture. Scanning electron microscopy revealed the hyphal degradation of F. solani in the regions interacting with P. stutzeri YPL-1. The production of chitinase and properties of a crude preparation of the enzyme from P. stutzeri YPL-1 were investigated. Peak of the chitinase activity was detected after 4 hr of cultivation. The enzyme had optimum temperature and pH of 50$^{\circ}C$ and pH 5.3, respectively. The enzyme was stable in the pH range of 3.5 to 6.0 up to 50$^{\circ}C$. The enzyme was significantly inhibited by metal compounds such as $HgCl_2$, but was stimulated by $CoCl_2$. P. stutzeri YPL-1 produced high levels of the enzyme after 84 hr of incubation. Among the tested carbon sources, chitin was the most effective for the enzyme production, at the concentration level of 3%. As a source of nitrogen, peptone was the best for the enzyme production, at the concentration level of 4%. The maximum amount of enzyme was produced by cultivating the bacterium at a medium of initial pH 6.8.

  • PDF