• Title/Summary/Keyword: external strengthening

Search Result 302, Processing Time 0.031 seconds

Experimental Study of External Prestressing Strengthening Using Jacket-Base Anchorage System. (자켓-받침형 정착장치를 이용한 외부강선 보강 효과의 실험적 연구)

  • 김형규;양동석;박선규;곽수현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.457-462
    • /
    • 2002
  • Generally speaking, durability, load carrying capacity and the life of structure becomes to be shortened in all structures as time passed. Also, we have to repair and reinforce because of tile decrease of the traffic volume and overloaded vehicles in the bridge. External prestressing method is most popular and effective strengthening method which can be used for the prestressed concrete-girders. When strengthening with external prestressing method, there are many ways to install anchorage system. But, These methods have many faults. For example, the achorage force is so small or an anchorage system installation damages an existing structure. So, this paper suggested a new anchorage system to strengthen without any damage to the structure and then confirm the increase of durability and the properties of behavior with experimentation.

  • PDF

The Study on Improvement of Flexural Performance of RC Beam Strengthened with CFRP Plate (탄소섬유보강판으로 보강된 철근콘크리트 보의 휨성능 개선에 관한 연구)

  • 한상훈;최만용;조홍동;박중열;황선일;김경식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.399-404
    • /
    • 2002
  • This paper presents the results cf research on improved flexural performance cf reinforced concrete beams strengthened with bonded carbon fiber reinforced polymer plate. Recently, strengthening technique with CFRP plate were almost carried out by external bonding. But current external bonding technique cf CFRP plates may result in debonding CFRP plate. Therefore, this study proposes a strengthening method that prevents or delays debonding between CFRP plates and concrete and at the same time improves the strength. For this test, there were only 14 test beams manufactured and failure load, deflection, strains and modes cf failure have been examined Test variables included the type cf strengthening, steel ratio and strengthening length, and the effects according to each test variables were analyzed. The experimental results show that the strength and stiffness cf the beam significantly increased between 34.55 and 116.51% and the increase cf the more lead-carrying capacity than the control beams.

  • PDF

Flexural Strengthening Capacities in Prestressed concrete Beams Applied to Outcable technique (아웃케이블 공법을 적용한 프리스트레스 철근콘크리트 보의 휨보강 성능)

  • Park Wan-Shin;Yun Hyun-Do;Han Byung-Chan;Hwang Sun-Kyung;Lim Jea-Hyung;Moon Jeong-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.268-271
    • /
    • 2004
  • A strengthening technique for reinforced concrete beams using external unhanded reinforcement offers advantages in speed and simplicity of installation over other, established, strengthening techniques. The purpose of this paper is to investigate the capabilities of a new retrofitting technique, namely external prestressing out cable, for flexural strengthening of beams. The paper provides a general description of structural behavior of beams strengthened using the technique. Results of four physical tests on strengthened reinforced concrete beams are reported and compared. It is shown that the technique can provide greater strength enhancement to lightly reinforced sections and that provision of deflectors enhances efficiency.

  • PDF

A Study on Strengthening of PSC Beam by Fatigue Experiment (피로 실험에 의한 PSC 부재의 성능개선기법에 관한 연구)

  • Kim, Hyun-Ho;Song, Jae-Pil;Kim, Ki-Bong;Chung, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.165-172
    • /
    • 2003
  • The fatigue problem of Prestressed Concrete(PSC) bridges are more serious than the other type of concrete bridges, because the cross sectional area and self weight of PSC bridges are smaller. The endurance of strengthening methods for PSC bridges are tested in this study. Glass fiber sheeting and external post-tensioning methods were applied. 1/5 scale PSC beams were made for fatigue test, same as static test. The range of repeated load is from 10% to 80% of yielding load with sine curve. The experimental results show that the failure cycle of strengthened members are increased compare to non-strengthened members. The members strengthened with glass fiber show better enhancement in fatigue problem than the members strengthened with external post-tensioning method, though the adhesion of glass fiber and concrete is failed, as increase of crack. With these experimental results, it can be said that the strengthening methods used in this study are efficient at extending the life time of aged PSC bridges.

Analytical and numerical studies on hollow core slabs strengthened with hybrid FRP and overlay techniques

  • Kankeri, Pradeep;Prakash, S. Suriya;Pachalla, Sameer Kumar Sarma
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.535-546
    • /
    • 2018
  • The objective of this study is to understand the behaviour of hollow core slabs strengthened with FRP and hybrid techniques through numerical and analytical studies. Different strengthening techniques considered in this study are (i) External Bonding (EB) of Carbon Fiber Reinforced Polymer (CFRP) laminates, (ii) Near Surface Mounting (NSM) of CFRP laminates, (iii) Bonded Overlay (BO) using concrete layer, and (iv) hybrid strengthening which is a combination of bonded overlay and NSM or EB. In the numerical studies, three-dimensional Finite Element (FE) models of hollow core slabs were developed considering material and geometrical nonlinearities, and a phased nonlinear analysis was carried out. The analytical calculations were carried out using Response-2000 program which is based on Modified Compression Field Theory (MCFT). Both the numerical and analytical models predicted the behaviour in agreement with experimental results. Parametric studies indicated that increase in the bonded overlay thickness increases the peak load capacity without reducing the displacement ductility. The increase in FRP strengthening ratio increased the capacity but reduced the displacement ductility. The hybrid strengthening technique was found to increase the capacity of the hollow core slabs by more than 100% without compromise in ductility when compared to their individual strengthening schemes.

The Experimental and Analytical Study on the Behavior of Composite Beam in the Processing of External Post Prestressing strengthen (외부 후긴장 보강 과정의 합성보 거동에 대한 실험 및 해석적 연구)

  • Park, Yong-Gul;Park, Young-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.4
    • /
    • pp.147-153
    • /
    • 2001
  • The major objectives of this study are to investigate experimental and analytical behavior of composite steel plate strengthened by external post prestressing method and to study the increasing magnitude of load carrying capacity by the external post prestressing method. With installed strain gauges and LVDT, the change of structural behaviors according to the amount of prestressing force is measured and the effects of shear strengthening according to the degree of angle in tendon are studied. The analytical structural behavior according to the amount of prestressing force is also investigated using finite element method. The effectiveness of strengthening of external post prestressing method is proved and an efficient FEM model is suggested by comparing the test results and analyzing results.

  • PDF

BEHAVIOR AND DUCTILITY OF STRENGTHENED WITH EXTERNAL USING LIFTING HOLE ANCHORAGE SYSTEM

  • Kyeong-Seok Baek;ChangDu Son;Kyoung-Bong Han;Jun-Myung Park;Sun-Kyu Park
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1618-1624
    • /
    • 2009
  • Since various methods for repairing and rehabilitating have been applied to damaged bridges to increase their load carrying capacity, many researches on the methods have been widely carried out. In particular, In terms of applicability, strengthening efficiency and economical efficiency, external tendons using lifting hole anchorage system is the most effective method among the aforementioned methods. In order to verify the strengthening effectiveness, flexural experiments on the beams strengthened with external tendons using lifting hole anchorage system were carried out. The experiments were conducted on two groups of systems, the existing and the proposed external tendons using lifting hole anchorage system. In addition, An evaluation on ductility of the beams were conducted in this paper.

  • PDF

An innovative experimental method to upgrade performance of external weak RC joints using fused steel prop plus sheets

  • Kheyroddin, Ali;Khalili, Ali;Emami, Ebrahim;Sharbatdar, Mohammad K.
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.443-460
    • /
    • 2016
  • In this paper, the efficiency and effectiveness of two strengthening methods for upgrading behavior of the two external weak reinforced concrete (RC) beam-column joints were experimentally investigated under cyclic loading. Since two deficient external RC joints with reduced beam height and low strength concrete were strengthened using one-way steel prop and curbs with and without steel revival sheets on the beam. The cyclic performance of these strengthened specimens were compared with two another control external RC beam-column joints, one the standard RC joint that had not two mentioned deficiencies and another had both. Therefore, four half-scale RC joints were tested under cyclic loading.The experimental results showed that these innovative strengthening methods (RC joint with revival sheet specially) surmounted the deficiencies of weak RC joints and upgraded their performance and bearing capacity, stiffness degradation, energy absorption, up to those of standard RC joint. Also, results exhibited that the prop at joint acted as a fuse element due to adding steel revival sheets on the RC beam and showed better behavior than that of the specimen without steel revival sheets. In other words by stiffening of beam, the prop collected all damages due to cyclic loading at itself and acted as the first line of defense and prevented from sever damages at RC joint.

A Case Study of a Female Patient with Patellofemoral Pain Syndrome for Effect of Hip Joint Traction and Hip Posterolateral Muscles Strengthening on Knee Pain, Range of Motion, and Lower Extremity Function Scale (슬개대퇴통증 증후군 환자에게 적용한 고관절 견인과 근력 강화 운동이 무릎 통증, 관절가동범위, 하지기능에 미치는 영향-사례 연구)

  • Hong, Hyun-Pyo
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.20 no.1
    • /
    • pp.35-38
    • /
    • 2014
  • Background: The case study examined the effect of a hip joint traction and hip posterolateral muscles strengthening on knee pain, range of motion, and lower extremity function scale of patients with patellofemoral pain syndrome (PFPS). Although PFPS has previously been attributed to quadriceps dysfunction, more recent research has linked this condition to impairment of the hip musculature and kinematic. Methods: Subject is a 27-years-old female with PFPS. Performed hip joint traction with belt and posterolateral muscles(hip abductors, external rotators) strengthening for 4 weeks, 3 times a week, once a day. Before and after the therapy, measurements were made on the visual analog scale (VAS) and of the ROM, and a lower extremity functional scale (LEFS) was conducted. Results: The results showed positive changes in VAS and range of motion and lower extremity functional scale. First VAS of knee changed from 6 to 2. Second hip joint range of motion showed that internal rotation recored from $53^{\circ}$ to $58^{\circ}$ and external rotation recorded from $32^{\circ}$ to $37^{\circ}$. Third The lower extremity functional scale showed before therapy of 44; after therapy, 63. Conclusion: The hip joint traction and hip posterolateral muscles strengthening was effective in alleviating knee pain, increasing ROM and Lower extremity functional scale of the PFPS patients.

Seismic Performance Evaluation of Seismic Strengthening Method using SRCF External Connection of Medium and Low-rise R/C Buildings (중·저층 철근콘크리트 건물의 SRCF 외부접합 내진보강공법의 내진성능 평가)

  • Lee, Kang-Seok;Jung, Jue-Seong;Lee, Jong-Kweon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.147-155
    • /
    • 2015
  • A new SRCF (Steel Reinforced Concrete Frame) external connection method for seismic strengthening of medium-and low-rise reinforced concrete buildings is reported in this paper. The SRCF method, proposed in this study, is capable of carrying out the seismic retrofitting construction while residents can live inside building. The method is one of the strength design approach by retrofit which can easily increase the ultimate lateral load capacity of concrete buildings controlled by shear. The pseudo-dynamic test, designed using a existing school building in Korea, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and deformation. Test results revealed that the proposed SRCF strengthening method installed in RC frame enhanced conspicuously the strength and deformation capacities, and the method can resist markedly under the large scaled earthquake intensity level.