• Title/Summary/Keyword: external quantum efficiency

Search Result 202, Processing Time 0.021 seconds

Dependance on Metal Electrode of Poly(3-hexylthiophene) EL Device (Poly(3-hexylthiophene) 발광소자의 금속전극 의존성)

  • 서부완;김주승;김형곤;이경섭;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.162-165
    • /
    • 2000
  • To investigate the effect of metal electrode in electroluminescent[EL] devices, we fabricated EL devices of ITO/P3HT/Al, ITO/P3HT/LiF/Al and ITO/P3HT/Mg:In structure. In current-voltage-light power characteristics, turn-on voltage of EL devices using LiF insulating layer and Mg:In(2.8V) metal electrode is lower than EL device using Al(4.2V). Besides the external quantum efficiency is improved also. The reason is related to carrier mobility and carrier injection, which would affect the hole-electron balance. In the device with Al electrode, holes injected from indium-tin-oxide[ITO] to poly(3-hexylthiophene)[P3HT] might reach the Al electrode without interacting with injected electrons, because the electron injection efficiency was very low for this electrode. Besides oxidation of the Al electrode is likely due to holes reaching the cathode without meeting injected electrons. Another possible reason for the higher EL efficiency may be the insulating layer playing the role of a tunneling barrier for holes to the Al electrode. In all EL devices, the orange-red light was clearly visible in a dark room. Maximum peak wavelength of EL spectrum emitted at 640nm in accordance with photon energy 1.9eV

  • PDF

Efficiency Improvement of Organic Light-emitting Diodes depending on Thickness of Hole Injection Materials

  • Kim, Weon-Jong;Yang, Jae-Hoon;Kim, Tag-Yong;Jeong, Joon;Lee, Young-Hwan;Hong, Jin-Woong;Park, Ha-Yong;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.5
    • /
    • pp.233-237
    • /
    • 2005
  • In the device structure of ITO/hole injection layer/N, N'-biphenyl-N, N'-bis-(1-naphenyl)-[1,1'-biphenyl]4,4'-diamine(NPB)/tris(8-hydroxyquinoline) aluminum$(Alq_3)/Al$, we investigated an effect of hole-injection materials (PTFE, PVK) on the electrical characteristics and efficiency of organic light-emitting diodes. A thermal evaporation was performed to make a thickness of NPB layer with a evaporation rate of $0.5\~1.0\;\AA/s$ in a base pressure of $5\times10^{-6}$ Torr. We measured current-voltage characteristics and efficiency with a thickness variation of hole-injection layer. The PTFE and PVK hole-injection layer improve a performance of the device in several aspects, such as good mechanical junction, reducing the operating voltage and energy band adjustment. Compared with the devices without a hole-injection layer, we have obtained that an optimal thickness of NPB was 20 nm in the device structure of $ITO/NPB/Alq_3/Al$. And using the PTFE or PVK hole-injection layer, the external quantum efficiencies of the devices were improved by $24.5\%\;and\;51.3\%$, respectively.

Effect of Short Circuit Current Enhancement in Solar Cell by Quantum Well Structure and Quantitative Analysis of Elements Using Secondary Ion Mass Spectrometry (양자우물구조에 의한 태양전지 단락전류 증가 효과와 이차이온 질량분석법에 의한 원소 정량 분석)

  • Kim, Junghwan
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.499-503
    • /
    • 2019
  • Characteristics of solar cells employing a lattice matched GaInP/GaAs quantum well (QW) structure in a single N-AlGaInP/p-InGaP heterojunction (HJ) were investigated and compared to those of solar cells without QW structure. The epitaxial layers were grown on a p-GaAs substrate with $6^{\circ}$ off the (100) plane toward the <111>A. The heterojunction of solar cell consisted of a 400 nm N-AlGaInP, a 590 nm p-GaInP and 14 periods of a 10 nm GaInP/5 nm GaAs for QW structure and a 800 nm p-GaInP for the HJ structure (control cell). The solar cells were characterized after the anti-reflection coating. The short-circuit current density for $1{\times}1mm^2$ area was $9.61mA/cm^2$ for the solar cell with QW structure while $7.06mA/cm^2$ for HJ control cells. Secondary ion mass spectrometry and external quantum efficiency results suggested that the significant enhancement of $J_{sc}$ and EQE was caused by the suppression of recombination by QW structure.

Fabrication of Scattering Layer for Light Extraction Efficiency of OLEDs (RIE 공정을 이용한 유기발광다이오드의 광 산란층 제작)

  • Bae, Eun Jeong;Jang, Eun Bi;Choi, Geun Su;Seo, Ga Eun;Jang, Seung Mi;Park, Young Wook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.95-102
    • /
    • 2022
  • Since the organic light-emitting diodes (OLEDs) have been widely investigated as next-generation displays, it has been successfully commercialized as a flexible and rollable display. However, there is still wide room and demand to improve the device characteristics such as power efficiency and lifetime. To solve this issue, there has been a wide research effort, and among them, the internal and the external light extraction techniques have been attracted in this research field by its fascinating characteristic of material independence. In this study, a micro-nano composite structured external light extraction layer was demonstrated. A reactive ion etching (RIE) process was performed on the surfaces of hexagonally packed hemisphere micro-lens array (MLA) and randomly distributed sphere diffusing films to form micro-nano composite structures. Random nanostructures of different sizes were fabricated by controlling the processing time of the O2 / CHF3 plasma. The fabricated device using a micro-nano composite external light extraction layer showed 1.38X improved external quantum efficiency compared to the reference device. The results prove that the external light extraction efficiency is improved by applying the micro-nano composite structure on conventional MLA fabricated through a simple process.

Characteristics of $1.3\;{\mu}m$ InAs/GaAs Quantum Dot Laser Diode for High-Power Applications (고출력 응용을 위한 $1.3\;{\mu}m$ InAs/GaAs 양자점 레이저 다이오드의 특성 연구)

  • Kim, Kyoung-Chan;Yoo, Young-Chae;Lee, Jung-Il;Han, Il-Ki;Kim, Tae-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.477-478
    • /
    • 2006
  • Characteristics of InAs/GaAs quantum dot (QD) ridge laser diodes (LDs) are investigated for high-power $1.3\;{\mu}m$ applications. For QD ridge LDs with a $5-{\mu}m$-wide stripe and a 1-mm-long cavity, the emission wavelength of 1284.1 nm, the single-uncoated-facet CW output power as high as 90 mW, the external efficiency of 0.31 W/A and the threshold current density of $800\;mA/cm^2$ are obtained. The linewidth enhancement factor ($\alpha$-factor) is successfully measured to be between 0.4 and 0.6, which are about four times as small values with respect to conventional quantum well structure. It is possible that this result significantly reduce the filamentation of far-field profiles resulting in better beam quality for high power operation.

  • PDF

Effect of Air Exposure on ZnO Thin Film for Electron Transport Layer of Quantum Dot Light-Emitting Diode (ZnO 박막 전자수송층의 공기 노출에 의한 양자점 발광다이오드의 특성 변화)

  • Eunyong Seo;Kyungjae Lee;Jeong Ha Hwang;Dong Hyun Kim;Jaehoon Lim;Donggu Lee
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.455-461
    • /
    • 2023
  • We investigated the electrical characteristics of ZnO nanoparticles (NPs) with air exposure that is a widely used electron transport layer for quantum dot light-emitting diodes (QLEDs). Upon air exposure, we observed changes in the density of states (DOS) of the trap levels of ZnO NPs. In particular, with air exposure, the concentration of deep trap energy levels in ZnO NPs decreased and electron mobility significantly improved. Consequently, the air-exposed ZnO reduced leakage current by approximately one order of magnitude and enhanced the external quantum efficiency at the low driving voltage region of the QLED. In addition, based on the excellent conductivity properties, high-brightness QLEDs could be achieved.

Evaluation of green light Emitting diode with p-type GaN interlayer (P형 GaN 중간층이 삽입된 녹색 발광다이오드 특성 평가)

  • Kim, Eunjin;Kim, Jimin;Jang, Soohwan
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.274-277
    • /
    • 2016
  • Effects of interlayer insertion between multi-quantum well and electron blocking layer of green light emitting diode on diode performances were studied by device simulation. Dependence of Mg doping depth on characteristics of current-voltage, emitting wavelength, leakage current, and external quantum efficiency was investigated, and the optimum diode structure was presented. Device structures with interlayers doped in entire region and up to 30 nm showed remarkable reduced leakage current and effectively relieved efficiency droop which is one of the biggest challenges in green light emitting diode. Furthermore, the most improved characteristics in current-voltage and electroluminescence was obtained by the latter structure.

Property change of organic light-emitting diodes due to a SAM treatment of the ITO surface (ITO 표면의 SAM형 습식 개질에 의한 유기 발광 소자의 특성 변화)

  • Na, Su-Hwan;Joo, Hyun-Woo;An, Hui-Chul;Kim, Tae-Wan;Song, Min-Jong;Lee, Ho-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.314-315
    • /
    • 2008
  • We have studied a property change of organic light-emitting diodes (OLED)s due to a surface reformation of indium-tin-oxide(ITO) substrate. An ITO is widely used as a transparent electrode in light-emitting diodes, and the OLEDs device performance is sensitive to the surface properties of the ITO. The ITO surface reformation could reduce the Schottky barrier at the ITO/organic interface and increase the adhesion of the organic layer onto the electrode. We have studied the characteristics of OLEDs with a treatment by a wet processing of the ITO substrate. The self-assembled monolayer(SAM) was used for wet processing. The characteristics of OLEDs were improved by SAM treatment of an ITO in this work. The OLEDs with a structure of ITO/TPD(50nm)/$Alq_3$(70nm)/LiF(0.5nm)/Al(100nm) were fabricated, and the surface properties of ITO were investigated by using seneral characterization techniques. Self-assembled monolayer introduced at the anode/organic interface gave an improvement in turn-on voltage, luminance and external quantum efficiency compared to the device without the SAM layer. SAM-treatment time of the ITO substrate was made to be 0/10/15/20/25min. The current efficiency of the device with 15min. treated SAM layer was increased by 3 times and the external quantum efficiency by 2.6 times.

  • PDF

Efficiency Improvement of the Organic Light-Emitting Diodes depending on Thickness Variation of Hole-Infection Materials (정공 주입 물질 두께 변화에 따른 유기 발광 다이오우드 효율 향상)

  • Kim, Weon-Jong;Lee, Young-Hwan;Cha, Ki-Ho;Lee, Sang-Kyo;Kim, Tae-Wan;Hong, Jin-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1291-1292
    • /
    • 2006
  • In the structure of ITO/HIL/$Alq_3$/Al device, we investigated an efficiency improvement of the Organic Light-Emitting Diodes depending on thickness variation of hole-injection layer. Using the thermal evaporation in a base vacuum $5{\times}10^{-5}$[Torr], we have measured efficiency after the $Alq_3$ was evaporated to 100 [nm] as a deposition rate $1.5[{\AA}/s]$. In optimal condition, when PTFE thickness increased from 0 to 3.0 [nm], we have obtained that an optimal thickness of PTFE was 2.5 [nm]. And using the PTFE, luminance efficiency and external quantum efficiency of the device were improved by 12.8 times and 11.1 times, respectively.

  • PDF

Light Emitting Diode with Multi-step Quantum Well Structure for Sensing Applications (계단형 양자우물 구조가 적용된 센서 광원 용 발광다이오드 소자)

  • Seongmin Park;Seungjoo Lee;Jajeong Woo;Yukyung Kim;Soohwan Jang
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.441-446
    • /
    • 2023
  • Electrical and optical characteristics of the GaN-based light-emitting diode (LED) with the improved multi-quantum well (MQW) structure have been studied for light source in bio-sensing systems. Novel GaN/In0.1GaN/In0.2GaN/In0.1GaN/GaN and Al0.1GaN/GaN/In0.2GaN/GaN/Al0.1GaN (MQW) structures were suggested, and their radiative recombination rate, light output power, electroluminescence, and external quantum efficiency were compared with those of the conventional GaN/In0.2GaN/GaN MQW structure using device simulation. The LED with the GaN/In0.1GaN/In0.2GaN/In0.1GaN/GaN MQW structure showed an excellent recombination rate of 5.57 × 1028 cm-3·s-1 that was more than one order improvement over that of the conventional LED. In addition, the efficiency droop was relieved by the suggested stepped MQW structure.