• 제목/요약/키워드: external potential

검색결과 751건 처리시간 0.029초

Methods of Improving Operational Reliability of Oil Well Casing

  • Sergey A. Dolgikh;Irek I. Mukhamatdinov
    • Corrosion Science and Technology
    • /
    • 제23권1호
    • /
    • pp.1-10
    • /
    • 2024
  • Oil well casing leak is caused by contact of casing outer surface with formation electrolyte. It is usually associated with an aquifer with a high salt content or absence of a cement ring behind the casing. The only way to reduce external casing corrosion is through cathodic protection. Through cathodic polarization of casing structure, electron content in crystal lattice and electron density will increase, leading to a potential shift towards the cathodic region. At Tatneft enterprises, cathodic protection is carried out according to cluster and individual schemes. The main criterion for cathodic protection is the size of protective current. For a casing, the protective current is considered sufficient if measurements with a two-contact probe show that the electric current directed to the casing has eliminated all anode sites. To determine the value of required protective current, all methods are considered in this work. In addition, an analysis of all methods used to determine the minimum protective current of the casing is provided. Results show that the method of measuring potential drop along casing is one of the most reliable methods for determining the value of protective current.

확률적 프론티어 방법을 이용한 도시철도 운영기관의 효율성 분석 : 외부 환경요인의 효과 (The Efficiency Analyses of Urban Railway Corporations Using a Stochastic Frontier Analysis : The Effect of External Factors)

  • 강병재;손기형;이수열
    • 경영과학
    • /
    • 제31권2호
    • /
    • pp.49-63
    • /
    • 2014
  • With the huge concerns on the inefficiency of public enterprises, particularly a significant amount of debt, an increasing number of studies have been carried out to analyze the levels of inefficiency and investigate the causes of that inefficiency. However, very limited range of analytical methodologies have been used in the efficiency analysis and moreover, the effects of external factors have been little addressed. This study explores the efficiency of urban railway corporations in Korea by utilizing a method of stochastic frontier analysis (SFA). In particular, the potential effects of external factors including residential and floating populations of a station were statistically analyzed. A total of seven Korean urban railway corporations were selected to compare each other in terms of operational efficiency. The results present three important findings. First, the Cobb-Douglas model was found to be more valid for SFA compared to the Translog model. Second, the efficiencies of urban railway corporations in Seoul and Busan are relatively high whereas those of Daejeon and Gwangju are very low in efficiency in the area of sales revenue. In an aspect of number of transport of passengers, Gwangju Metro also showed the lowest efficiency. Third, the external factors are significantly associated with the efficiency, indicating that the efficiencies of Daejeon Metro and Gwangju Metro would increase while the efficiency of Seoul Metro would decreases when the external variables are excluded in the efficiency analysis. The results provide several meaningful implications for managers of the urban railway corporations as well as policy makers who are attempting to resolve the inefficiency problems of public enterprises.

Anticorrosive Monitoring and Complex Diagnostics of Corrosion-Technical Condition of Main Oil Pipelines in Russia

  • Kosterina, M.;Artemeva, S.;Komarov, M.;Vjunitsky, I.;Pritula, V.
    • Corrosion Science and Technology
    • /
    • 제7권4호
    • /
    • pp.208-211
    • /
    • 2008
  • Safety operation of main pipelines is primarily provided by anticorrosive monitoring. Anticorrosive monitoring of oil pipeline transportation objects is based on results of complex corrosion inspections, analysis of basic data including design data, definition of a corrosion residual rate and diagnostic of general equipment's technical condition. All the abovementioned arrangements are regulated by normative documents. For diagnostics of corrosion-technical condition of oil pipeline transportation objects one presently uses different methods such as in-line inspection using devices with ultrasonic, magnetic or another detector, acoustic-emission diagnostics, electrometric survey, general external corrosion diagnostics and cameral processing of obtained data. Results of a complex of diagnostics give a possibility: $\cdot$ to arrange a pipeline's sectors according to a degree of corrosion danger; $\cdot$ to check up true condition of pipeline's metal; $\cdot$ to estimate technical condition and working ability of a system of anticorrosive protection. However such a control of corrosion technical condition of a main pipeline creates the appearance of estimation of a true degree of protection of an object if values of protective potential with resistive component are taken into consideration only. So in addition to corrosive technical diagnostics one must define a true residual corrosion rate taking into account protective action of electrochemical protection and true protection of a pipeline one must at times. Realized anticorrosive monitoring enables to take a reasonable decision about further operation of objects according to objects' residual life, variation of operation parameters, repair and dismantlement of objects.

COMPUTATION AND ANALYSIS OF MATHEMATICAL MODEL FOR MOVING FREE BOUNDARY FLOWS

  • Sohn, Sung-Ik
    • 대한수학회지
    • /
    • 제37권5호
    • /
    • pp.779-791
    • /
    • 2000
  • The nonlinear stage of the evolution of free boundary between a light fluid and a heavy fluid driven by an external force is studied by a potential flow model with a source singlarity. The potential flow model is applied to a bubble and spije evolution for constantly accelerated interface (Rayleigh-Taylor instability) and impulsively accelerated interface (Richtmyer-Meshkow instability). The numerical results of the model show that, in constantly accelerated intergace, bubble grows with constant velocity and the spike falls with gravitational acceleration at later times, while the velocity of the bubble in impulsively accelerated interface decay to zero asymp flow model for the bubble and spike for constantly accelerated interface and impulsively accelerated interface.

  • PDF

THE ION ACOUSTIC SOLITARY WAVES AND DOUBLE LAYERS IN THE SOLAR WIND PLASMA

  • Choi C.R.;Lee D.Y.;Kim Yong-Gi
    • Journal of Astronomy and Space Sciences
    • /
    • 제23권3호
    • /
    • pp.209-216
    • /
    • 2006
  • Ion acoustic solitary wave in a plasma consisting of electrons and ions with an external magnetic field is reinvestigated using the Sagdeev's potential method. Although the Sagdeev potential has a singularity for n < 1, where n is the ion number density, we obtain new solitary wave solutions by expanding the Sagdeev potential up to ${\delta}n^4$ near n = 1. They are compressiv (rarefactive) waves and shock type solitary waves. These waves can exist all together as a superposed wave which may be used to explain what would be observed in the solar wind plasma. We compared our theoretical results with the data of the Freja satellite in the study of Wu et al. (1996). Also it is shown that these solitary waves propagate with a subsonic speed.

온도변화에 따른 AISI 304SS의 틈내 전위강하에 관한 연구 (A Study on the IR Drop in Crevice of AISI 304 Stainless Steel by Temperature Variation)

  • 나은영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권7호
    • /
    • pp.872-878
    • /
    • 2003
  • As the results of recent industrial development, many industrial plants and marine structures are exposed to severe corrosion environment than before. Especially, under the wet environment, crevice corrosion damage problems necessarily occur and encourage many interests to prevent them. In this study, the electrochemical polarization test was carried out to study characteristics of crevice corrosion for AISI 304 stainless steel in various solution temperatures. The results are as follows ; 1) as the solution temperature increased in IN $\textrm{H}_2\textrm{SO}_4$, the passive current density and critical current density were increased, whereas corrosion potential and break down potential were nearly constant, 2) as the solution temperature increased. the induced time for initiation of crevice corrosion was shortened. 3) The potential range in the crevice was -220mV/SCE to -380mV/SCE according to the distance from the crevice opening, which is lower than that of external surface of -200mV/SCE.

AC-PDP구동에서 전위차로 인한 벽전하의 소실과 어드레스 방전 지연시간에 관한 연구 (A Study on an Address Discharge Time Lag and a Wall-Charge Loss Due to the Potential)

  • 전원재;김동훈;김종열;이석현;이천
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1315-1317
    • /
    • 2008
  • The plasma display panel is an image expression display using gas discharge. However gas discharge characteristics vary with temperature. Furthermore, the potential difference among three electrodes appears in sustain period due to external applied voltages. It affects to the wall charge state accumulated on the electrodes. This research aims at identifying that the discharge characteristics depend on the potential difference and temperature. The results show that the wall charge loss increases with increase of the number of applied pulse during sustain period and it severely appears at high temperature.

  • PDF

Design of steel moment frames considering progressive collapse

  • Kim, Jinkoo;Park, Junhee
    • Steel and Composite Structures
    • /
    • 제8권1호
    • /
    • pp.85-98
    • /
    • 2008
  • In this study the progressive collapse potential of three- and nine-story special steel moment frames designed in accordance with current design code was evaluated by nonlinear static and dynamic analyses. It was observed that the model structures had high potential for progressive collapse when a first story column was suddenly removed. Then the size of beams required to satisfy the failure criteria for progressive collapse was obtained by the virtual work method; i.e., using the equilibrium of the external work done by gravity load due to loss of a column and the internal work done by plastic rotation of beams. According to the nonlinear dynamic analysis results, the model structures designed only for normal load turned out to have strong potential for progressive collapse whereas the structures designed by plastic design concept for progressive collapse satisfied the failure criterion recommended by the GSA guideline.

Pseudo-electromagnetism in graphene

  • Son, Young-Woo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.11-11
    • /
    • 2011
  • In this talk, I will discuss roles of pseudo vector and scalar potential in changing physical properties of graphene systems. First, graphene under small uniaxial strain is shown to be described by the generalized Weyl's Hamiltonian with inclusion of pseudo vector and scalar potential simultaneously [1]. Thus, strained graphene is predicted to exhibit velocity anisotropy as well as work function enhancement without any gap. Second, if homogeneous strains with different strengths are applied to each layer of bilayer graphene, transverse electric fields across the two layers can be generated without any external electronic sources, thereby opening an energy gap [2]. This phenomenon is made possible by generation of inequivalent pseudo scalar potentials in the two graphene layers. Third, when very tiny lateral interlayer shift occurs in bilayer graphene, the Fermi surfaces of the system are shown to undergo Lifshitz transition [3]. We will show that this unexpected hypersensitive electronic topological transition is caused by a unique interplay between the effective non-Abelian vector potential generated by sliding motions and Berry's phases associated with massless Dirac electrons.

  • PDF

The Indoor Environmental Quality Improving and Energy Saving Potential of Phase-Change Material Integrated Facades for High-Rise Office Buildings in Shanghai

  • Jin, Qian
    • 국제초고층학회논문집
    • /
    • 제6권2호
    • /
    • pp.197-205
    • /
    • 2017
  • The conflict between indoor environmental quality and energy consumption has become an unneglectable problem for highrise office buildings, where occupants' productivity is highly affected by their working environment. An effective Façade, therefore, should play the role of an active building skin by adapting to the ever-changing external environment and internal requirements. This paper explores the energy-saving and indoor environment-improving potential of a phase-change material (PCM) integrated Façade. Building performance simulations, combined with parametric study and sensitivity analysis, are adopted in this research. The result quantifies the potential of a PCM-integrated Façade with different configurations and PCM properties, taking as an example a south-oriented typical office room in Shanghai. It is found that a melting temperature of around $22^{\circ}C$ for the PCM layer is optimal. Compared to a conventional Façade, a PCM-integrated Façade effectively reduces total energy use, peak heating/cooling load, and operative temperature fluctuation during the periods of May-July and November-December.