• Title/Summary/Keyword: external insulation system

Search Result 74, Processing Time 0.036 seconds

A Study on the Cold Reserving Performance of PET Bottle with Shrinkage Film

  • Hong, Dae Gi;Lyu, Min Young
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.123-127
    • /
    • 2019
  • Shrink film is currently being used for plastic container lavels to avoid the use of glue. Polyethylene terephthalate (PET) bottle lavels also use shrink films in the same PET materials for easy recycling of PET bottles. An air layer is generated between the shrink film and PET bottle surface due to the bent shape of the bottle surface. This air layer can insulate external heat, as air has a relatively lower thermal conductivity. In this study, the insulation property of the air layer was examined by computer simulation. Two PET bottle models were used, one with and the other without an air layer between the PET bottle surface and lavel. The two bottle models were filled with cold liquid and exposed to room temperature for 6 h, and the temperatures of the contents were then compared. The results showed that the temperature of the contents in the bottle with the air layer was lower than that without the air layer by at least $2^{\circ}C$. This study suggests an effective lavel design of PET bottles while ensuring that the temperature of the bottle contents is maintained.

Structural glass panels: An integrated system

  • Bidini, G.;Barelli, L.;Buratti, C.;Castori, G.;Belloni, E.;Merli, F.;Speranzini, E.
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.327-332
    • /
    • 2022
  • In building envelope, transparent components play an important role. The structural glazing systems are the weak element of the casing in terms of mechanical resistance, thermal and acoustic insulation. In the present work, new structural glass panels with granular aerogel in interspace were investigated from different points of view. In particular, the mechanical characterization was carried out in order to assess the resistance to bending of the single glazing pane. To this end, a special instrument system was built to define an alternative configuration of the coaxial double ring test, able to predict the fracture strength of glass large samples (400 × 400 mm) without overpressure. The thermal and lighting performance of an innovative double-glazing façade with granular aerogel was evaluated. An experimental campaign at pilot scale was developed: it is composed of two boxes of about 1.60 × 2 m2 and 2 m high together with an external weather station. The rooms, identical in terms of size, construction materials, and orientation, are equipped with a two-wing window in the south wall surface: the first one has a standard glazing solution (double glazing with air in interspace), the second room is equipped with the innovative double-glazing system with aerogel. The indoor mean air temperature and the surface temperature of the glass panes were monitored together with the illuminance data for the lighting characterization. Finally, a brief energy characterization of the performance of the material was carried out by means of dynamic simulation models when the proposed solution is applied to real case studies.

Study on the Damage Pattern Analysis of a 3 Phase 22.9/3.3kV Oil Immersed Transformer and Judgment of the Cause of Its Ignition (3상 22.9/3.3kV 유입변압기의 소손패턴 해석 및 발화원인 판정에 관한 연구)

  • Choi, Chung-Seog
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1274-1279
    • /
    • 2011
  • The purpose of this paper is to present the manufacturing defect and damage pattern of a 3 phase 22.9/3.3kV oil immersed transformer, as well as to present an objective basis for the prevention of a similar accident and to secure data for the settlement of PL related disputes. It was found that in order to prevent the occurrence of accidents to transformers, insulating oil analysis, thermal image measurement, and corona discharge diagnosis, etc., were performed by establishing relevant regulation. The result of analysis performed on the external appearance of a transformer to which an accident occurred, the internal insulation resistance and protection system, etc., showed that most of the analysis items were judged to be acceptable. However, it was found that the insulation characteristics between the primary winding and the enclosure, those between the ground and the secondary winding, and those between the primary and secondary windings were inappropriate due to an insulating oil leak caused by damage to the pressure relief valve. From the analysis of the acidity values measured over the past 5 years, it is thought that an increase in carbon dioxide (CO2) caused an increase in the temperature inside the transformer and the increase in the ethylene gas increased the possibility of ignition. Even though 17 years have passed since the transformer was installed, it was found that the system's design, manufacture, maintenance and management have been performed well and the insulating paper was in good condition, and that there was no trace of public access or vandalism. However, in the case of transformers to which accidents have occurred, a melted area between the upper and the intermediate bobbins of the W-phase secondary winding as well as between its intermediate and lower bobbins. It can be seen that a V-pattern was formed at the carbonized area of the transformer and that the depth of the carbonization is deeper at the upper side than the lower side. In addition, it was found that physical bending and deformation occurred inside the secondary winding due to non-uniform pressure while performing transformer winding work. Therefore, since it is obvious that the accident occurred due to a manufacturing defect (winding work defect), it is thought that the manufacturer of the transformer is responsible for the accident and that it is lawful for the manufacture to investigate and prove the concrete cause of the accident according to the Product Liability Law (PLL).

Annual Energy Performance Evaluation of Zero Energy House Using Metering Data (실측데이터를 이용한 에너지제로주택의 연간 에너지성능평가)

  • Lim, Hee-Won;Yoon, Jong-Ho;Shin, U-Cheul
    • KIEAE Journal
    • /
    • v.16 no.3
    • /
    • pp.113-119
    • /
    • 2016
  • Purpose: In this study, we evaluate the annual energy performance of the detached house which was designed with the aim of zero energy. Method: The experimental house which was constructed in Gonju Chungnam in 2013, is the single family detached house of light weight wood frame with $100m^2$ of heating area. Thermal transmittance of roof (by ISO 10211) and building external walls are designed as $0.10W/m^2K$ and $0.14W/m^2$ respectively and low-e coating vacuum window glazing with PVC frame was installed. Also grid connected PV system and natural-circulation solar water heater was applied and 6kWp capacity of photovoltaic module was installed in pitched roof and $5m^2$ of solar collector in vertical wall facing the south. We analyzed the 2014 annual data of the detached house in which residents were actually living, measured though web-based remote monitoring system. Result: First, as a result, total annual energy consumption and energy production (PV generation and solar hot water) are 7,919kWh and 7,689kWh respectively and the rate of energy independence is 97.1% which is almost close to the zero energy. Second, plug load and hot water of energy consumption by category showed the highest numbers each with 33% and 31%, with following space heating 24%, electric cooker 8%, lighting 3% in order. Hot water supply is relatively higher than space heating because high insulation makes it decreased.

Development and Basic Experiment of Active Noise Control System for Reduction of Road Noise (도로 소음 저감을 위한 능동소음제어 시스템의 개발 및 기초실험)

  • Moon, Hak Ryong;Kang, Won Pyoung;Lim, You Jin
    • International Journal of Highway Engineering
    • /
    • v.15 no.6
    • /
    • pp.41-47
    • /
    • 2013
  • PURPOSES : The purpose of this study is about noise which is generated from roads and is consist of irregular frequency variation from low frequency to various band. The existing methods of noise reduction are sound barrier that uses insulation material and absorbing material or have applied passive technology of noise reduction by devices. The total frequency band is needed to apply active noise control. METHODS : In this study applies to the field of road traffic environment, signal processing controller and various analog signal input/output, the amplifier module is based on parallel-core embedded processor designed. DSP performs the control algorithm of the road traffic noise. Noise sources in the open space performance of evaluation were applied. In this study, controller of active signal processor was designed based on the module of audio input/output and main controller of embedded process. The controller of active signal processor operates noise reduction algorithm and performance tests of noise reduction in inside and outside environment were executed. RESULTS : The signal processing controller with OMAP-L137 parallel-core processors as the center, DSP processors in the active control operations dealt with quickly. To maximize the operation speed of an object and ARM processor is external function keys and display for functions and evaluating the performance management system was designed for the purpose of the interface. Therefore the reduction of road traffic noise has established an electronic controller-based noise reduction. CONCLUSIONS : It is shown that noise reduction is effective in the case of pour tonal sound and complex tonal sound below 500Hz by appling to Fx-LMS.

Risk Factors Related to Photo Couplers(P/C) for Signal Transmission by Electronic Devices (전자기기의 신호전송을 위한 Photo Couplers(P/C) 의 위험 요소 발굴)

  • Park, Hyung-Ki;Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.2
    • /
    • pp.26-30
    • /
    • 2013
  • The purpose of this study is to find risk factors by analyzing the operation principle of a photo coupler (P/C) used to remove the noise of electronic devices and establish a base for the performance improvement of developed products. It was found from the P/C circuit analysis of normal products that they were equipped with an electrolytic condenser of $0.1{\mu}F$ to smooth system signals. Due to the epoxy resin packing the external part of the P/C, this study experienced a limit to visually examine the damage to it. It could be seen from the analysis of electric characteristics of the P/C that the forward voltage ($V_f$) and reverse current ($I_r$) were 1.3 V and 10 uA, respectively. In addition, it is required that the breakdown voltage (VCE) between the collector (C) and emitter (E) be maintained at less than 35 V. The and of the damaged product #1 were comparatively good. However, the measurement of was 100.0 uA. From this, it is thought that a short circuit occurred to the internal circuit. Moreover, from the fact that the of the damaged product #2 was open circuit and the measurement of was 0.0 uA, it is thought that the collector and emitter was separated or insulation resistance was significantly high. Furthermore, from the fact that the of the damaged product #3 was open circuit and the measurement of was 0.0 uA, it is thought that the space between the collector (C) and emitter (E) failed to meet the design standard or that they were separated. Therefore, it is thought that fabricating the P/C by increasing the reverse current 10 mA to 50 mA will prevent its malfunction.

A Study for the Fire Analysis and Igniting Cause of Freezing Protection Heating Cables (동파방지열선 화재 흔적분석과 발화원인 연구)

  • Lee, Jung Il;Ha, Kag Cheon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.3
    • /
    • pp.15-20
    • /
    • 2018
  • There have been a number of major fatal fire accidents in Korea recently. The number of fires in 2017 were 44,178, which is not only increasing number of fires but also increasing in casualties. Particularly, the fire at Jecheon Sports Center, which suffered many casualties, is expected to have a huge impact. The cause of the fire has not been determined yet, but heat waves on the ceiling have also been pointed out. As such, the copper heating waves, which are used as a preventive measure against damage of pipes due to freezing of pipes, etc., always have a fire hazard. To determine the possibility of a flame-resistant heated fire, a positive electric cable product was used to artificially ignite and analyze the results. In case of a short circuit, the external covering of the positive electric cable is damaged, but not short circuit unless the heating material surrounding the wire is damaged. Due to the characteristics of heating cable for preventing copper waves, the chances of insulation becoming more severe due to moisture and temperature changes are higher than normal wires. If the internal heating system is carbonized by insulating deterioration without damage to the outer coating, it is likely to cause trekking, to form a winding loop in the heating materials, and to cause short circuit in the heated materials. For the positive temperature line, if the middle is shorted, the current continues to flow to the short circuit unless the breaker disconnects. Consequently, a heated fire that does not cut off the power immediately may leave multiple marks or cuts.

Application of Fault Current Limiter in 22.9kV KEPCO power distribution line (22.9kV 지중선로용 한류기 한전 실계통 시범적용)

  • Kim, Min Jee;Park, Kyungwon;Ahn, Kil-Young;Kim, Young-keun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1034-1035
    • /
    • 2015
  • Watertight 25.8 kV/600 A/12.5 kA fault current limiters (FCLs) have successfully installed in five areas (Incheon, Seoul, Gyeong-gi, Daejeon, Suwon) on KEPCO power distribution line for the purpose of commercial demonstrations. The fault current limiting operation of this FCL, which includes functions of sensing, commutation, and reduction of fault currents, is perfectly completed within 1 cycle immediately after fault occurs. The performance of FCL was verified by short circuit test, impedance test, insulation test, temperature-rise test, and control test, etc at PT&T in LS industrial systems, which is the official certification institute in Korea. In 2013, and also the FCL field test was performed in order to test the protection coordination between conventional relays and FCL, on the 1.5 kA and 5.0 kA faults, which were made by connecting the Artificial Fault Generator (AFG) to the distribution line in test grid at KEPCO Power Testing Center. The next step of this project is to check the FCL conditions caused by real external environment, and acquire the various data from five regions installed with FCL. In this paper, we intend to explain the FCL specifications and performance characteristics, and check the expected effect by application of FCL to power distribution line based on the power system analysis of an application site.

  • PDF

Review of Safety for Pressure-Relieving Systems of Small to Middle Scale Chemical Plants (중소규모 화학공장의 압력방출시스템에 대한 안전성 검토)

  • Yim, Ji-Pyo;Jin, Dae-Young;Ma, Byung-Chol;Kang, Sung-Ju;Chung, Chang-Bock
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.48-55
    • /
    • 2015
  • A variety of safety issues were investigated for chemical reactors using a toluene solvent in case of a fire at small to middle scale chemical plants. The issues covered the operation of pressure-relieving valves and the subsequent discharges of the toluene to the atmosphere either directly or through an absorber, which represent the current practice at most small chemical plants. It was shown that the safety valve on the reactor may not operate within about twenty minutes after an external fire breaks out, but, once relieved, the toluene vapor released directly to the atmosphere may form a large explosion range on the ground. It was also shown that if the discharge is routed to an existing absorber used for the scrubbing of volatile organic compounds or dusts, the column may not operate normally due to excessive pressure drops or flooding, resulting in the hazardous release of toluene vapors. This study proposed two ways of alleviating these risks. The first is to ruduce the discharge itself from the safety valve by using adequate insulation and protection covers on the reactor and then introduce it into the circulation water at the bottom of the absorber through a dip linet pipe equipped with a ring-shaped sparger. This will enhance the condensation of toluene vapors with the reduced effluent vapors treated in the packing layers above. The second is to install a separate quench drum to condense the routed toluene vapors more effectively than the existing absorber.

Experimental Analysis on the Performance of a Solar Powered Water Pump (태양열 물펌프의 실험적 성능분석)

  • Kim Y. B.;Son J. G.;Lee S. K.;Kim S. T.;La W. J.;Lee Y. K.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.6 s.107
    • /
    • pp.521-530
    • /
    • 2004
  • The solar powered water pump is very ideal equipment because solar power is more intensive when the water is more needed in summer and it is very helpful in the rural area, in which electrical power is not available. The average solar radiation power is $3.488\;kWh/(m^2{\cdot}day)$ in Korea. In this study, the experimental system of the water pump driven by the radiation energy were designed, assembled, tested and analyzed fur realizing the solar powered water pump. Energy conversion ken radiation energy to mechanical energy by using n-pentane as operating material was done and the water pumping cycles were able to be continued. The quantity of the water pumped per cycle ranged from 2 L to 10 L depending on the level of the valve open area far the vapour supply. The average quantity was about 4,366 cc. The thermal efficiency was about $0.018\%$. The pressure level of the n-pentane vapour in flash tank was about $110\~150\;kPa$ and that in the water tank was $93\~130\;kPa$. The pressure in the condenser during cycles was maintained as about 70 kPa. The condensation of the n-pentane vapour in the water tank was increased with the cycles even though the internal and external insulation were done. Air tank performance was better with increasing of the water piston displacement and the water could be pumped with the water piston displacement becoming higher than 6,500 cc.