• Title/Summary/Keyword: external forces

Search Result 730, Processing Time 0.025 seconds

Transient Forces on Pipe Bends by the Propagation of Pressure Wave

  • Woo, Hyo-Seop;Papadakis, C.N.;Kim, Won
    • Korean Journal of Hydrosciences
    • /
    • v.6
    • /
    • pp.99-105
    • /
    • 1995
  • External forecs acting on a pipe bend change when a transient pressure wave propagates through the bend. Analytical expressions are derived to compute the changes of these forces which depend mainly on static pressure rather than fluid momentum. This analysis reveals that the change of the vertical component of the force acting on a pipe bend with an angle larger than 90 may reverse in direction during the passage of a pressure wave through the bend.

  • PDF

Elastokinematic Analysis for Calculating Suspension Design Parameters (현가계 설계인자 계산을 위한 탄성기구학 해석)

  • 강주석;윤중락;배상우;이장무;탁태오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.887-890
    • /
    • 1996
  • In this study, based on the assumption that the displacements of suspension systems under the external forces are very small, a linear form of elastokinametic equations in terms of infinitesimal displacements and joint reaction forces are derived. The equations can be applied to any form of suspensions once the type of kinematic joints and bushings are identified. The validity of the method is proved through the comparison of the results from the more complex solution offered by ADAMS

  • PDF

Estimation of Surface Forces in Micro Rough Surface Contacts

  • Kim, Doo-In;Ahn, Hyo-Sok;Choi, Dong-Hoon
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.63-64
    • /
    • 2002
  • In a micro-scale contact, surface forces such as capillary force and van der Waals Interaction significantly Influence the contact between asperities of rough surfaces. Little is, however, known about the variation of these surface forces as a function of chemical property of the surface (hydrophilicity), relative humidity and deformation of asperities In the real area of contact. A better understanding of these surface forces is of great necessity in order to find an optimal solution for reducing friction and adhesion of micro surfaces. We proposed an effective method to analyze capillary and van der Waals forces In nano-scale contact. In this method, Winklerian foundation model was employed to analyze the contact of rough surfaces that were obtained from atomic force microscopy (AFM) height Images. Self-mated contact of diamond-like-carbon (DLC) coatings was analyzed, as an example, by the proposed model. It was shown that the capillary force was significantly influenced by relative humidify and wet angle of the DLC surface. The deformation of asperities to a critical magnitude by external loading led to a considerable increase of both capillary and van der Waals forces.

  • PDF

The structural safety assessment of a tie-down system on a tension leg platform during hurricane events

  • Yang, Chan K.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.1 no.4
    • /
    • pp.263-283
    • /
    • 2011
  • The performance of a rig tie-down system on a TLP (Tension Leg Platform) is investigated for 10-year, 100-year, and 1000-year hurricane environments. The inertia loading on the derrick is obtained from the three-hour time histories of the platform motions and accelerations, and the dynamic wind forces as well as the time-dependent heel-induced gravitational forces are also applied. Then, the connection loads between the derrick and its substructure as well as the substructure and deck are obtained to assess the safety of the tie-down system. Both linear and nonlinear inertia loads on the derrick are included. The resultant external forces are subsequently used to calculate the loads on the tie-down clamps at every time step with the assumption of rigid derrick. The exact dynamic equations including nonlinear terms are used with all the linear and second-order wave forces considering that some dynamic contributions, such as rotational inertia, centripetal forces, and the nonlinear excitations, have not been accounted for in the conventional engineering practices. From the numerical simulations, it is seen that the contributions of the second-order sum-frequency (or springing) accelerations can be appreciable in certain hurricane conditions. Finally, the maximum reaction loads on the clamps are obtained and used to check the possibility of slip, shear, and tensile failure of the tie-down system for any given environment.

Influence of infill walls on modal expansion of distribution of effective earthquake forces in RC frame structures

  • Ucar, Taner
    • Earthquakes and Structures
    • /
    • v.18 no.4
    • /
    • pp.437-449
    • /
    • 2020
  • It is quite apparent that engineering concerns related to the influence of masonry infills on seismic behavior of reinforced concrete (RC) structures is likely to remain relevant in the long term, as infill walls maintain their functionalities in construction practice. Within this framework, the present paper mainly deals with the issue in terms of modal expansion of effective earthquake forces and the resultant modal responses. An adequate determination of spatial distribution of effective earthquake forces over the height of the building is highly essential for both seismic analysis and design. The possible influence of infill walls is investigated by means of modal analyses of two-, three-, and four-bay RC frames with a number of stories ranging from 3 to 8. Both uniformly and non-uniformly infilled frames are considered in numerical analyses, where infill walls are simulated by adopting the model of equivalent compression strut. Consequently, spatial distribution of effective earthquake forces, modal static base shear force response of frames, modal responses of story shears from external excitation vector and lateral floor displacements are obtained. It is found that, infill walls and their arrangement over the height of the frame structure affect the spatial distribution of modal inertia forces, as well as the considered response quantities. Moreover, the amount of influence varies in stories, but is not very dependent to bay number of frames.

Generalized Rayleigh wave propagation in a covered half-space with liquid upper layer

  • Negin, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.56 no.3
    • /
    • pp.491-506
    • /
    • 2015
  • Propagation of the generalized Rayleigh waves in an initially stressed elastic half-space covered by an elastic layer is investigated. It is assumed that the initial stresses are caused by the uniformly distributed normal compressional forces acting on the face surface of the covering layer. Two different cases where the compressional forces are "dead" and "follower" forces are considered. Three-dimensional linearized theory of elastic waves in initially stressed bodies in plane-strain state is employed and the elasticity relations of the materials of the constituents are described through the Murnaghan potential where the influence of the third order elastic constants is taken into consideration. The dispersion equation is derived and an algorithm is developed for numerical solution to this equation. Numerical results for the dispersion of the generalized Rayleigh waves on the influence of the initial stresses and on the influence of the character of the external compressional forces are presented and discussed. These investigations provide some theoretical foundations for study of the near-surface waves propagating in layered mechanical systems with a liquid upper layer, study of the structure of the soil of the bottom of the oceans or of the seas and study of the behavior of seismic surface waves propagating under the bottom of the oceans.

Characteristics of Forces upon Two-dimensional Circular Cylinder by External Singularities (외부 특이점이 2차원 원주에 작용하는 힘의 특성)

  • Lee, Seung-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.782-786
    • /
    • 2010
  • Thrust deduction related to the prediction of power performance of a ship is rather resistance increase, and as a preliminary study for it forces upon a circular cylinder in a uniform flow of ideal fluid due to singularities located behind it are investigated. The circle theorem is used to get the complex velocity potential for the flow field under consideration, and the Blasius theorem is applied to obtain forces upon the circular cylinder. As singularities sinks, point vortices and dipoles and their combinations are treated. $\varepsilon$, standing for the strength of a singularity, and $\delta$, representing the distance between the cylinder and the singularity, are important small parameters for the resistance and lateral forces. For sinks or point vortices it is shown that the dimensionless forces upon the cylinder is O($\epsilon$) if $\epsilon$= O($\delta$) is assumed, and the same holds for dipoles if $\epsilon$= O(${\delta}^3$) is supposed. Forces upon the cylinder by a symmetric pair of sinks are greater than a single sink located at the central plane since there is an additional term due to cross effects, and the same is also valid for the case of dipole. Combination of dipole and a point vortex is also considered and a few new aspects are clarified.

Nonlinear Motion Analysis of FPSO with Turret Mooring System (터렛계류된 FPSO의 비선형 운동 해석)

  • Lim, Choon-Gyu;Lee, Ho-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.161-166
    • /
    • 2002
  • As offshore oil fields move towards the deep ocean, the oil production systems such as FPSO are being built these days. Generally, the FPSO is moored by turret mooring lines to keep the position of FPSO. Thus nonlinear motion analysis of moored FPSO must be carried out in the initial design stage because sea environments affect motion of it. In this paper the mathematical model is based on the slow motion maneuvering equations in the horizontal plane considering wave, current and wind forces. The direct integration method is employed to estimate wave loads. The current forces are calculated by using mathematical model of MMG. The turret mooring forces are quasi-statically evaluated by using the catenary equation. The coefficients of a model for wind forces are calculated from Isherwood's experimental data and the variation of wind speed is estimated by wind spectrum according to the guidelines of API-RP2A. The nonlinear motions of FPSO are simulated under external forces due to wave, current, wind including mooring forces in time domain.

  • PDF

Nonlinear Motion Responses for A Moored Ship beside Quay (안벽에 계류된 선박에 대한 비선형 운동응답)

  • Lee, Ho-Yooung;Lim, Choon-Gyu;Lew, Jae-Moon;Chun, In-Sik
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.172-178
    • /
    • 2003
  • As a typoon gets into harbour, a moored ships shows erratic motions and even mooring line failures is occurred. Such troubles may be caused by harbour resonance phenomena, result in large motion amplitudes at law frequency, which is closed to the natural frequency of the moored ship. The nonlinear motions of a moored ship beside quay are simulated under external forces due to wave, current including mooring forces in time domain. The forces due to waves are obtained from source and dipole distribution method in the frequency domain. The current forces are calculated by using slow motion maneuvering equation in the horizontal plane. The wind forces are calculated from emperical formula of ABS and the mooring forces of ropes and fenders are modeled as linear spring.

  • PDF

Analysis of Surface Forces in Micro Contacts between Rough Surfaces (거친 표면간의 미세 접촉에서의 표면력 해석)

  • Kim, Doo-In;Ahn, Hyo-Sok;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2180-2186
    • /
    • 2002
  • In a micro-scale contact, capillary force and van der Waals interaction significantly influence the contact between asperities of rough surfaces. Little is, however, known about the variation of these surface forces as a function of chemical property of the surface (wet angle), relative humidity and deformation of asperities in the real area of contact. A better understanding of these surface forces is of great necessity in order to find a solution for reducing friction and adhesion of micro surfaces. The objective of this study is to investigate the surface forces in micro-scale rough surface contact. We proposed an effective method to analyze capillary and van der Waals forces in micro-scale contact. In this method, Winkler spring model was employed to analyze the contact of rough surfaces that were obtained from atomic force microscopy (AFM) height images. Self-mated contact of DLC(diamond like carbon) coatings was analyzed, as an example, by the proposed model. It was shown that the capillary force was significantly influenced by relative humidity and wet angle of the DLC surface. The deformation of asperities to a critical magnitude by external loading led to a considerable increase of both capillary and van der Waals forces.