• Title/Summary/Keyword: external flow field

Search Result 138, Processing Time 0.022 seconds

UNSTEADY HARTMANN FLOW WITH HEAT TRANSFER IN THE PRESENCE OF UNIFORM SUCTION AND INJECTION

  • Attia Hazem A.
    • The Pure and Applied Mathematics
    • /
    • v.13 no.1 s.31
    • /
    • pp.1-10
    • /
    • 2006
  • The unsteady Hartmann flow of an electrically conducting, viscous, incompressible fluid bounded by two parallel non-conducting porous plates is studied with heat transfer. An external uniform magnetic field and a uniform suction and injection are applied perpendicular to the plates while the fluid motion is subjected to a constant pressure gradient. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the magnetic field and the uniform suction and injection on both the velocity and temperature distributions is examined.

  • PDF

Unsteady Pressure Measurement of Fan Stator Vane Using Pressure Sensitive Paint

  • Sakamoto, Kazuyuki;Tsuchiya, Naoki;Yamamoto, Masahiko;Hamano, Yasunori;Fujii, Kozo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.789-794
    • /
    • 2004
  • The pressure sensitive paint (PSP) technique has been well established in external flow field. However, there are still unresolved issues in internal flow field. This work was focused on the application to unsteady pressure measurement of fan flow field. The PSP measurement system was established and the image processing software was developed. First, the performance of PSP was investigated at the static cell. Then the unsteady PSP measurement was carried out at fan test facility. PSP data images were acquired from the suction and pressure surface of stator vanes. Pressure distributions on the surface of the stator vane were detected non-intrusively. The issues of image acquisition and image processing were clarified through the practical PSP application to fan flow field.

  • PDF

A Study of Carbon Nanotube Channel Field-Effect Devices (탄소 나노튜브 채널을 이용한 전계효과 이온-전송 소자 연구)

  • Lee, Jun-Ha;Lee, Hoong-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.168-174
    • /
    • 2006
  • We investigated field-effect ion-transport devices based on carbon nanotubes by using classical molecular dynamics simulations under applied external force fields, and we present model schematics that can be applied to the nanoscale data storage devices and unipolar ionic field-effect transistors. As the applied external force field is increased, potassium ions rapidly flow through the nanochannel. Under low external force fields, thermal fluctuations of the nanochannels affect tunneling of the potassium ions whereas the effects of thermal fluctuations are negligible under high external force fields. Since the electric current conductivity increases when potassium ions are inserted into fullerenes or carbon nanotubes, the field effect due to the gate, which can modify the position of the potassium ions, changes the tunneling current between the drain and the source.

  • PDF

Variation of Flow Rates in Heterogeneous Microchannel Systems (비균일계 마이크로채널에서의 유량 변화 특성)

  • Kim, Jin-Yong;Lee, Hyo-Song;Yu, Jae-Keun;Kim, Ki-Ho;Rhee, Young Woo
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.28-32
    • /
    • 2006
  • This study investigated the variation of flow rates in microchannels that consisted of polydimethyl siloxane (PDMS) and glass using various external voltages. Three different microchannel widths and two different depths. PDMS and negative photoresist (SU-8) were used to make the microchannels by the soft lithographic method. For each depth of microchannel ($50{\mu}m$ and $100{\mu}m$), three different widths ($100{\mu}m$, $200{\mu}m$ and $300{\mu}m$) were made. In each case, several different external voltages were applied (0.3 kV, 0.35 kV, 0.4 kV and 0.45 kV) to examine the flow rates. Our results indicated that flow rate increased with an increase of the external voltage at the same microchannel width. This was because the electrical field was increased as the external voltage increased. For the same external voltage, the flow rate increased as the microchannel's width increased. These results showed that the resistance in the microchannel decreased as the microchannel's width increased. Also, to investigate the effect of microchannel's depth and width, the cross-sectional area of the microchannel was increased to the double in area. As a result, the effect of the microchannel's depth was higher at a low external voltage, and the effect of the microchannel's width was higher at a high external voltage.

Enhanced Gradient Vector Flow in the Snake Model: Extension of Capture Range and Fast Progress into Concavity (Snake 모델에서의 개선된 Gradient Vector Flow: 캡쳐 영역의 확장과 요면으로의 빠른 진행)

  • Cho Ik-Hwan;Song In-Chan;Oh Jung-Su;Om Kyong-Sik;Kim Jong-Hyo;Jeong Dong-Seok
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.1
    • /
    • pp.95-104
    • /
    • 2006
  • The Gradient Vector Flow (GVF) snake or active contour model offers the best performance for image segmentation. However, there are problems in classical snake models such as the limited capture range and the slow progress into concavity. This paper presents a new method for enhancing the performance of the GVF snake model by extending the external force fields from the neighboring fields and using a modified smoothing method to regularize them. The results on a simulated U-shaped image showed that the proposed method has larger capture range and makes it possible for the contour to progress into concavity more quickly compared with the conventional GVF snake model.

Flow Control and Drag Reduction of a Circular Cylinder by an External Magnetic Field (자기장을 사용한 원형주상체 주위의 유동 제어 및 저항감소)

  • 윤현식;전호환
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.2
    • /
    • pp.70-78
    • /
    • 2004
  • The present study numerically investigates two-dimensional laminar flow past a circular cylinder in an aligned magnetic field using the spectral method. Numerical simulations are performed for flow fields with Re=100 and 200 in the range of 0$\leq$N$\leq$10, where Ν is the Stuart number that is the ratio of electromagnetic force to inertial force. The present study reports the detailed information of flow quantities on the cylinder surface at different Stuart numbers. It is shown that the vortex shedding can be controlled by the magnetic force representing the Stuart number. As Ν increases, the vortex shedding becomes weaker, resulting in drag reduction whose magnitude is the largest at a critical value. In addition, as the magnetic force increases, the lift amplitude decreases, reaching zero at the critical number.

A Study of Flow Pattern around the Two-Dimensional Dual Subsea Pipeline on Sea Bottom (해저면에 설치된 2차원 복합해저관로 주위의 유동특성에 관한 실험적 연구)

  • 나인삼;조철희;정우철;김두홍
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.122-127
    • /
    • 2001
  • As pipelines are often used to transport gas, oil, water and oil products, there are more than one pipeline installed in the offshore field. The size and space of pipelines are various depending on the design specifications. The pipelines are to be designed and installed to secure the stability to external loads during the installation and operation period. The flow patterns are very complex around the pipelines being dependent on incoming flow velocity, pipelines size and space. To investigate the flow patterns, number of experiment are conducted with visualization equipment in a circulating water channel. The flow motion and trajectory were recorded from the laser reflected particles by camera. From the experiment the flow patterns around spaced pipelines were obtained. Also pressure gradient was measured by mano-meter to estimate the hydrodynamic forces on the behind pipeline. The results show that the various sizes and spaces can be affected in the estimation of external load. The complex flow patterns and pressure gradients can be effectively used in the understanding of flow motion and pressure gradient.

  • PDF

Sanitary sewer flow characteristics through a depth-velocity scatter graph analysis (수위-유속 분산 그래프를 통한 하수흐름 특성 분석)

  • Son, Jooyoung;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.6
    • /
    • pp.647-655
    • /
    • 2014
  • To perform long-term sewer monitoring, It is important to understand the nature of the wastewater flow that occurs at the point on early stage of the monitor and to prevent in advance a problem which may caused. We can infer the flow properties and external factors by analyzing the scatter graph obtained from the measured data flow rate monitoring data since an field external factor affecting the sewage flow is reflected in the flow rate monitoring data. In this study, Selecting the three points having various external factors, and we Inferred the sewer flow characteristics from depth-velocity scatter graph and determined the analysis equation for the dry-weather flow rate data. At the'point 1' expected non-pressure flow, we were able to see the drawdown effect caused by the free fall in the manhole section. At the'point 2', existed weir and sediments, there was backwater effect caused by them, and each of size calculated from the scatter graph analysis were 400 mm and 130 mm. At the'Point 3', there is specific flow pattern that is coming from flood wave propagation generated by the pump station at upstream. In common, adequate equations to explain the dry weather flow data are flume equation and modified manning equation(SS method), and the equations had compatibility for explaining the data because all of $R^2$ values are over 0.95.

Image Analysis for the Simultaneous Measurement of Underwater Flow Velocity and Direction (수중 유속 및 유향의 동시 측정을 위한 이미지 분석 기술에 관한 연구)

  • Dongmin Seo;Sangwoo Oh;Sung-Hoon Byun
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.307-312
    • /
    • 2023
  • To measure the flow velocity and direction in the near field of an unmanned underwater vehicle, an optical measurement unit containing an image sensor and a phosphor-integrated pillar that mimics the neuromasts of a fish was constructed. To analyze pillar movement, which changes with fluid flow, fluorescence image analysis was conducted. To analyze the flow velocity, mean force analysis, which could determine the relationship between the light intensity of a fluorescence image and an external force, and length-force analysis, which could determine the distance between the center points of two fluorescence images, were employed. Additionally, angle analysis that can determine the angles at which pixels of a digital image change was selected to analyze the direction of fluid flow. The flow velocity analysis results showed a high correlation of 0.977 between the external force and the light intensity of the fluorescence image, and in the case of direction analysis, omnidirectional movement could be analyzed. Through this study, we confirmed the effectiveness of optical flow sensors equipped with phosphor-integrated pillars.

Prediction on The Base Pressure for An Axisymmetric Body (선대칭 형태에 있어서의 베이스 압력의 예측)

  • Baik, Doo-Sung;Han, Young-Chool
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.491-496
    • /
    • 2000
  • The physics of the flow field surrounding an engine nacelle afterbody is very complex. A high pressure jet from the nozzle interacts with the external flow and causes upstream influence on the afterbody surface field. At certain conditions, the nozzle boundary layer can separate, either by shock wave interaction or by adverse pressure gradient effect, resulting in a severe drag penalty. Furthermore, a finite afterbody base implies a recirculating flow region. A flow modeling method has been developed to analyze the flow in the annular base(rear-facing surface) of a circular engine nacelle flying at subsonic speed but with a supersonic exhause jet. Real values of exhaust gas properties and temperature are included.

  • PDF